This love's a nameless dream.
•
• try to figure it out
• more quotes

very clickable

π day
·
ASCII
·
choices
·
clocks
·
color
·
constellations
^{NEW}
·
covers
^{NEW}
·
deadly genomes
^{NEW}
·
debates
·
emotions
·
famous rat
·
gigapixel skies
^{NEW}
·
hitchens
·
keyboards
·
languages
·
LOTRO
·
photography
·
questions
·
quotes
·
road trips
·
rockets
·
satire
·
spam poetry
·
time
·
tripsum
·
type
·
unwords
·
voids
·
words
·
writing
·
zaomm

visualization
**+** math

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

Not a circle in sight in the 2015 `\pi` day art. Try to figure out how up to 612,330 digits are encoded before reading about the method. `\pi`'s transcendental friends `\phi` and `e` are there too—golden and natural. Get it?

This year's `\pi` day is particularly special. The digits of time specify a precise time if the date is encoded in North American day-month-year convention: 3-14-15 9:26:53.

The art has been featured in Ana Swanson's Wonkblog article at the Washington Post—10 Stunning Images Show The Beauty Hidden in `\pi`.

This year's art has a modern Bauhaus style. Sharp edges, lines and solid colors. Potato farms from space. CPUs from up close. If the pieces look like the art of Piet Mondrian, you'd be right.

The digits of `pi` are encoded in something that looks like a treemap. I explain how this is done in the methods section, but before reading it, try to see if you can figure out how it's done.

I briefly experimented with the 4-color theorem in trying to apply color to the treemap, but it turned out to lack interesting stucture. Well, at least some graphs were made.

I experimented with different treemap resolutions. For treemaps that use an outline around each rectangle, I decided to stop at 8 levels, at which 111,469 digits of `pi` can be encoded.

I also made a level 9 treemap without the outlines, which encoded 612,330 digits. When rendered at 20,833 × 20,833 pixels (I needed the image in bitmap form to provide the posters for sale), some regions are essentially a pixel in size, as seen in the 1-1 crop below.

If you enjoy treemaps, explore Ben Shneiderman's History of Treemaps and Treemap Art.

news
**+** thoughts

*I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player*

In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.

If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.

Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.

Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. *Nat. Methods* **21**:1770–1772.

We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.

*All animals are equal, but some animals are more equal than others. —George Orwell*

This month, we will illustrate the importance of establishing a baseline performance level.

Baselines are typically generated independently for each dataset using very simple models. Their role is to set the minimum level of acceptable performance and help with comparing relative improvements in performance of other models.

Unfortunately, baselines are often overlooked and, in the presence of a class imbalance, must be established with care.

Megahed, F.M, Chen, Y-J., Jones-Farmer, A., Rigdon, S.E., Krzywinski, M. & Altman, N. (2024) Points of significance: Comparing classifier performance with baselines. *Nat. Methods* **21**:546–548.

sunflowers ho!

Celebrate π Day (March 14th) and dig into the digit garden. Let's grow something.

*Huge empty areas of the universe called voids could help solve the greatest mysteries in the cosmos.*

My graphic accompanying How Analyzing Cosmic Nothing Might Explain Everything in the January 2024 issue of Scientific American depicts the entire Universe in a two-page spread — full of nothing.

The graphic uses the latest data from SDSS 12 and is an update to my Superclusters and Voids poster.

Michael Lemonick (editor) explains on the graphic:

“Regions of relatively empty space called cosmic voids are everywhere in the universe, and scientists believe studying their size, shape and spread across the cosmos could help them understand dark matter, dark energy and other big mysteries.

To use voids in this way, astronomers must map these regions in detail—a project that is just beginning.

Shown here are voids discovered by the Sloan Digital Sky Survey (SDSS), along with a selection of 16 previously named voids. Scientists expect voids to be evenly distributed throughout space—the lack of voids in some regions on the globe simply reﬂects SDSS’s sky coverage.”

Sofia Contarini, Alice Pisani, Nico Hamaus, Federico Marulli Lauro Moscardini & Marco Baldi (2023) Cosmological Constraints from the BOSS DR12 Void Size Function *Astrophysical Journal* **953**:46.

Nico Hamaus, Alice Pisani, Jin-Ah Choi, Guilhem Lavaux, Benjamin D. Wandelt & Jochen Weller (2020) Journal of Cosmology and Astroparticle Physics **2020**:023.

Sloan Digital Sky Survey Data Release 12

Alan MacRobert (Sky & Telescope), Paulina Rowicka/Martin Krzywinski (revisions & Microscopium)

Hoffleit & Warren Jr. (1991) The Bright Star Catalog, 5th Revised Edition (Preliminary Version).

*H*_{0} = 67.4 km/(Mpc·s), *Ω*_{m} = 0.315, *Ω*_{v} = 0.685. Planck collaboration Planck 2018 results. VI. Cosmological parameters (2018).

*It is the mark of an educated mind to rest satisfied with the degree of precision that the nature of the subject admits and not to seek exactness where only an approximation is possible. —Aristotle*

In regression, the predictors are (typically) assumed to have known values that are measured without error.

Practically, however, predictors are often measured with error. This has a profound (but predictable) effect on the estimates of relationships among variables – the so-called “error in variables” problem.

Error in measuring the predictors is often ignored. In this column, we discuss when ignoring this error is harmless and when it can lead to large bias that can leads us to miss important effects.

Altman, N. & Krzywinski, M. (2024) Points of significance: Error in predictor variables. *Nat. Methods* **21**:4–6.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. *Nat. Methods* **12**:999–1000.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. *Nat. Methods* **13**:541–542 (2016).

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. *Nat. Methods* **16**:451–452.

Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences Centre ⊂ BC Cancer Research Center ⊂ BC Cancer ⊂ PHSA

{ 10.9.234.152 }