2024 π Daylatest newsbuy art
music + dance + projected visualsNosaj Thingmarvel at perfect timingmore quotes
very clickable
visualization + math

π Day 2024 Art Posters - A community garden of digits of π
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
2024 π DAY | 768 digits of `\pi` as a garden at night. Explore the gardens (BUY ARTWORK)

`\pi` Day 2016 Art Posters


Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2021 π DAY | Good things grow for those who wait.' edition.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2019 π DAY | Hundreds of digits, hundreds of languages and a special kids' edition.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2018 π DAY | Street maps to new destinations.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 π DAY | Imagine the sky in a new way.


Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 π APPROXIMATION DAY | What would happen if about right was right.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 π DAY | These digits really fall for each other.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 π DAY | A transcendental experience.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 π APPROXIMATION DAY | Spirals into roughness.


Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 π DAY | Hypnotizes you into looking.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 π DAY | Come into the fold.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 π DAY | Where it started.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
CIRCULAR π ART | And other distractions.

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

Most of the art is available for purchase as framed prints and, yes, even pillows. Sleep's never been more important — I take custom requests.

This year's `\pi` day art collection celebrates not only the digit but also one of the fundamental forces in nature: gravity.

In February of 2016, for the first time, gravitational waves were detected at the Laser Interferometer Gravitational-Wave Observatory (LIGO).

The signal in the detector was sonified—a process by which any data can be encoded into sound to provide hints at patterns and structure that we might otherwise miss—and we finally heard what two black holes sound like. A buzz and chirp.

The art is featured in the Gravity of Pi article on the Scientific American SA Visual blog.

this year's theme music

All the art was processed while listening to Roses by Coeur de Pirate, a brilliant female French-Canadian songwriter, who sounds like a mix of Patricia Kaas and Lhasa. The lyrics Oublie-moi (Forget me) are fitting with this year's theme of gravity.

Mais laisse-moi tomber, laisse-nous tomber
Laisse la nuit trembler en moi
Laisse-moi tomber, laisse nous tomber
Cette fois

But let me fall, let us fall
Let the night tremble in me
Let me fall, let us fall
This time

The Einstein-`\pi` connection

The number `\pi` appears in the fundamental equation of general relativity, which relates gravity (left side) to energy and momentum (right side).

`R_{\mu \nu} - \tfrac{1}{2} Rg_{\mu\nu} = 8 \pi G T_{\mu \nu}`

The reason why `\pi` appears has to do with the need to include the surface area of the sphere, `4 \pi r^2` in the mathematics. This is very nicely described in Sean Carrol's article Einstein and `\pi`.

The gravity of `\pi`

Let's make the digits of `\pi` into masses, throw them into space, and watch gravity make them collide and orbit each other. Read about the details of the simulation and look at the posters.


Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The first 14 digits of `\pi` generate various orbits as the digits are assigned mass and subject to gravity. (BUY ARTWORK)

As the number of digits is increased, more elaborate patterns arise. Here is one simulation using 100 digits.


Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Things can get a little crazy with mor digits. Here, 153 digits are used. (BUY ARTWORK)

How about 1000 digits? In this simulation the masses are similar and they all collide within the circle.


Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The first 1000 digits of `\pi` collapse into a single mass. (BUY ARTWORK)

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The first 3 digits of `\pi` collapse into a single mass. 49 times. (BUY ARTWORK)

news + thoughts

Propensity score matching

Mon 16-09-2024

I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player

In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Propensity score matching. (read)

If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.

Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.

Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.

Nasa to send our human genome discs to the Moon

Sat 23-03-2024

We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
SANCTUARY PROJECT | A cosmic hello of art, science, and genomes. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
SANCTUARY PROJECT | Benoit Faiveley, founder of the Sanctuary project gives the Sanctuary disc a visual check at CEA LeQ Grenoble (image: Vincent Thomas). (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
SANCTUARY PROJECT | Sanctuary team examines the Life disc at INRIA Paris Saclay (image: Benedict Redgrove) (details)

Comparing classifier performance with baselines

Fri 22-03-2024

All animals are equal, but some animals are more equal than others. —George Orwell

This month, we will illustrate the importance of establishing a baseline performance level.

Baselines are typically generated independently for each dataset using very simple models. Their role is to set the minimum level of acceptable performance and help with comparing relative improvements in performance of other models.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Comparing classifier performance with baselines. (read)

Unfortunately, baselines are often overlooked and, in the presence of a class imbalance, must be established with care.

Megahed, F.M, Chen, Y-J., Jones-Farmer, A., Rigdon, S.E., Krzywinski, M. & Altman, N. (2024) Points of significance: Comparing classifier performance with baselines. Nat. Methods 21:546–548.

Happy 2024 π Day—
sunflowers ho!

Sat 09-03-2024

Celebrate π Day (March 14th) and dig into the digit garden. Let's grow something.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2024 π DAY | A garden of 1,000 digits of π. (details)

How Analyzing Cosmic Nothing Might Explain Everything

Thu 18-01-2024

Huge empty areas of the universe called voids could help solve the greatest mysteries in the cosmos.

My graphic accompanying How Analyzing Cosmic Nothing Might Explain Everything in the January 2024 issue of Scientific American depicts the entire Universe in a two-page spread — full of nothing.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
How Analyzing Cosmic Nothing Might Explain Everything. Text by Michael Lemonick (editor), art direction by Jen Christiansen (Senior Graphics Editor), source: SDSS

The graphic uses the latest data from SDSS 12 and is an update to my Superclusters and Voids poster.

Michael Lemonick (editor) explains on the graphic:

“Regions of relatively empty space called cosmic voids are everywhere in the universe, and scientists believe studying their size, shape and spread across the cosmos could help them understand dark matter, dark energy and other big mysteries.

To use voids in this way, astronomers must map these regions in detail—a project that is just beginning.

Shown here are voids discovered by the Sloan Digital Sky Survey (SDSS), along with a selection of 16 previously named voids. Scientists expect voids to be evenly distributed throughout space—the lack of voids in some regions on the globe simply reflects SDSS’s sky coverage.”

voids

Sofia Contarini, Alice Pisani, Nico Hamaus, Federico Marulli Lauro Moscardini & Marco Baldi (2023) Cosmological Constraints from the BOSS DR12 Void Size Function Astrophysical Journal 953:46.

Nico Hamaus, Alice Pisani, Jin-Ah Choi, Guilhem Lavaux, Benjamin D. Wandelt & Jochen Weller (2020) Journal of Cosmology and Astroparticle Physics 2020:023.

Sloan Digital Sky Survey Data Release 12

constellation figures

Alan MacRobert (Sky & Telescope), Paulina Rowicka/Martin Krzywinski (revisions & Microscopium)

stars

Hoffleit & Warren Jr. (1991) The Bright Star Catalog, 5th Revised Edition (Preliminary Version).

cosmology

H0 = 67.4 km/(Mpc·s), Ωm = 0.315, Ωv = 0.685. Planck collaboration Planck 2018 results. VI. Cosmological parameters (2018).

Error in predictor variables

Tue 02-01-2024

It is the mark of an educated mind to rest satisfied with the degree of precision that the nature of the subject admits and not to seek exactness where only an approximation is possible. —Aristotle

In regression, the predictors are (typically) assumed to have known values that are measured without error.

Practically, however, predictors are often measured with error. This has a profound (but predictable) effect on the estimates of relationships among variables – the so-called “error in variables” problem.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Error in predictor variables. (read)

Error in measuring the predictors is often ignored. In this column, we discuss when ignoring this error is harmless and when it can lead to large bias that can leads us to miss important effects.

Altman, N. & Krzywinski, M. (2024) Points of significance: Error in predictor variables. Nat. Methods 21:4–6.

Background reading

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nat. Methods 12:999–1000.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nat. Methods 13:541–542 (2016).

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nat. Methods 16:451–452.

Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA
Google whack “vicissitudinal corporealization”
{ 10.9.234.152 }