The rat genome sequencing project at the Baylor College of Medicine Human Genome Sequencing Centre is complete. The genome has been analyzed and published.
Here, I'd like to introduce you one of the faces of the project: Alex, the genomics rat idol.
Arguably, at one point Alex was the most popular rat on the internet. For the justification of this strong statement, read on.
Alex was born in May 2000. It's well known that a rat's cuteness reaches maximum at about 3-4 weeks. After this critical time, a pet store rat is less likely to be purchased and may be asked to act as snake food. In Alex's case, she was perilously close to her deadline. Luckily for her, we paid a ransom of $6.99 to the Noah's Ark pet shop in Vancouver. She was on her last cute leg.
From May 2000 Alex spent most of her time hoarding food pellets and riding on shoulders.
Alex liked to bite. And rats only bite hard — they don't nibble. Her contention for this unattractive behaviour was the uncanny similarity between a finger and a pellet of food.
Other than unpredictable bouts of biting (by far the most exciting aspect of her personality), Alex lacked other distinguishing characteristics.
Alex died of a seizure in late 2002. She was buried outside of the Museum of Anthropology. A ratty pair of underwear served as a burial shroud.
And I hope you got that last pun.
DOWNLOAD ALL PHOTOS — photos are for public use. Use, modification and distribution of these photos is unrestricted.
Despite my best efforts at meaningful work, this web page continues to be the most popular of all my online offerings, making for a somewhat embarrassing achievement.
Alex's images consistently show up first in Google's web search for 'rat', 'rat image' and image search for 'rat'. Excuse the very low quality screenshots.
Finally, Alex appears as the first entry in Google images for 'rat'.
Alex is neither without modesty nor public fame. Her first cover-ratgirl appearance was on the April 2004 issue of Genome Research.
More recently, she's appeared on the cover of Ethnologie Francaise (Jan-Mar 2009 issue). The topic of this issue was the relationship between animals and humans.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.
If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.
Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.
Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.
We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.
All animals are equal, but some animals are more equal than others. —George Orwell
This month, we will illustrate the importance of establishing a baseline performance level.
Baselines are typically generated independently for each dataset using very simple models. Their role is to set the minimum level of acceptable performance and help with comparing relative improvements in performance of other models.
Unfortunately, baselines are often overlooked and, in the presence of a class imbalance, must be established with care.
Megahed, F.M, Chen, Y-J., Jones-Farmer, A., Rigdon, S.E., Krzywinski, M. & Altman, N. (2024) Points of significance: Comparing classifier performance with baselines. Nat. Methods 21:546–548.
Celebrate π Day (March 14th) and dig into the digit garden. Let's grow something.
Huge empty areas of the universe called voids could help solve the greatest mysteries in the cosmos.
My graphic accompanying How Analyzing Cosmic Nothing Might Explain Everything in the January 2024 issue of Scientific American depicts the entire Universe in a two-page spread — full of nothing.
The graphic uses the latest data from SDSS 12 and is an update to my Superclusters and Voids poster.
Michael Lemonick (editor) explains on the graphic:
“Regions of relatively empty space called cosmic voids are everywhere in the universe, and scientists believe studying their size, shape and spread across the cosmos could help them understand dark matter, dark energy and other big mysteries.
To use voids in this way, astronomers must map these regions in detail—a project that is just beginning.
Shown here are voids discovered by the Sloan Digital Sky Survey (SDSS), along with a selection of 16 previously named voids. Scientists expect voids to be evenly distributed throughout space—the lack of voids in some regions on the globe simply reflects SDSS’s sky coverage.”
Sofia Contarini, Alice Pisani, Nico Hamaus, Federico Marulli Lauro Moscardini & Marco Baldi (2023) Cosmological Constraints from the BOSS DR12 Void Size Function Astrophysical Journal 953:46.
Nico Hamaus, Alice Pisani, Jin-Ah Choi, Guilhem Lavaux, Benjamin D. Wandelt & Jochen Weller (2020) Journal of Cosmology and Astroparticle Physics 2020:023.
Sloan Digital Sky Survey Data Release 12
Alan MacRobert (Sky & Telescope), Paulina Rowicka/Martin Krzywinski (revisions & Microscopium)
Hoffleit & Warren Jr. (1991) The Bright Star Catalog, 5th Revised Edition (Preliminary Version).
H0 = 67.4 km/(Mpc·s), Ωm = 0.315, Ωv = 0.685. Planck collaboration Planck 2018 results. VI. Cosmological parameters (2018).
constellation figures
stars
cosmology
It is the mark of an educated mind to rest satisfied with the degree of precision that the nature of the subject admits and not to seek exactness where only an approximation is possible. —Aristotle
In regression, the predictors are (typically) assumed to have known values that are measured without error.
Practically, however, predictors are often measured with error. This has a profound (but predictable) effect on the estimates of relationships among variables – the so-called “error in variables” problem.
Error in measuring the predictors is often ignored. In this column, we discuss when ignoring this error is harmless and when it can lead to large bias that can leads us to miss important effects.
Altman, N. & Krzywinski, M. (2024) Points of significance: Error in predictor variables. Nat. Methods 21:4–6.
Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nat. Methods 12:999–1000.
Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nat. Methods 13:541–542 (2016).
Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nat. Methods 16:451–452.