On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.
For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!
If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!
Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.
This year's `\pi` day art collection celebrates not only the digit but also one of the fundamental forces in nature: gravity.
In February of 2016, for the first time, gravitational waves were detected at the Laser Interferometer Gravitational-Wave Observatory (LIGO).
The signal in the detector was sonified—a process by which any data can be encoded into sound to provide hints at patterns and structure that we might otherwise miss—and we finally heard what two black holes sound like. A buzz and chirp.
The art is featured in the Gravity of Pi article on the Scientific American SA Visual blog.
All the art was processed while listening to Roses by Coeur de Pirate, a brilliant female French-Canadian songwriter, who sounds like a mix of Patricia Kaas and Lhasa. The lyrics Oublie-moi (Forget me) are fitting with this year's theme of gravity.
Mais laisse-moi tomber, laisse-nous tomber
Laisse la nuit trembler en moi
Laisse-moi tomber, laisse nous tomber
Cette fois
But let me fall, let us fall
Let the night tremble in me
Let me fall, let us fall
This time
The art is generated by running a simulation of gravity in which digits of `\pi` are each assigned a mass and allowed to collide eand orbit each other.
The mathematical details of the simulation can be found in the code section.
A simulation starts with taking `n` digits of `\pi` and arranging them uniformly around a circle. The mass of each digit, `d_i` (e.g. 3), is given by `(1+d)^k` where `k` is a mass power parameter between 0.01 and 1. For example, if `k=0.42` then the mass of 3 is `(1+3)^{0.42} = 1.79`.
The figure below shows the evolution of a simulation with `n=3` digits and `k=1`. The digits 3 and 4 collide to form the digit `3+4 = 7` and immediately collides with 1 to form `7+1=8`. With only one mass left in the system, the simulation stops.
When masses have initial velocities, the patterns quickly start to get interesting. In the figure above, the masses are initalized with zero velocity. As soon as the simulation, each mass immediately starts to move directly towards the center of mass of the other two masses.
When the initial velocity is non-zero, such as in the figure below, the masses don't immediately collapse towards one another. The masses first travel with their initial velocity but immediately the gravitational force imparts acceleration that alters this velocity. In the examples below, only those simulations in which the masses collapsed within a time cutoff are shown.
Depending on the initial velocities, some systems collapse very quickly, which doesn't make for interesting patterns.
For example, the simulations above evolved over 100,000 steps and in some cases the masses collapsed within 10,000 steps. In the figure below, I require that the system evolves for at least 15,000 steps before collapsing. Lovely doddles, don't you think?
When a simulation is repeated with different initial conditions, the set of outcomes is called an ensemble.
Below, I repeat the simulation 100 times with `n=3` and `k=0.2`, each time with slightly different initial velocity. The velocities have their `x`- and `y`-components normally distributed with zero mean and a fixed variance. Each of the four ensembles has its simulations evolve over progressively more time steps: 5,000, 7,500, 10,000, and 20,000.
You can see that with 5,000 steps the masses don't yet have a chance to collide. After 7,500, there have been collisions in a small number of systems. The blue mass corresponds to the 3 colliding with 4 and the green mass to 1 colliding with 4. After 10,000, even more collisions are seen and in 3 cases we see total collapse (all three digits collided). After 20,000,
The value of `k` greatly impacts the outcome of the simulation. When `k` is very small, all the digits have essentially the same mass. For example, when `k=0.01` the 0 has a mass of 1 and 9 has a mass of 1.02.
When `k` is large, the difference in masses is much greater. For example, for `k=2` the lightest mass is `(1+0)^2=1` and the heaviest `(1+9)^2=10`. Because the acceleration of a mass is proportional to the mass that is attracting it, in a pair of masses the light mass will accelerate faster.
As the number of digits is increased, the pattern of collapse doesn't qualitatively change.
I ran a large number of simulations. For various values of `n` and `k`, I repeated the simulation several times to sample different intial velocities.
Below is a great example of how a stable orbital pattern of a pair of masses can be disrupted by the presence of another mass. You can see on the left that once the light red mass moves away from the orange/green pair, they settle into a stable pattern.
The figure below shows one of my favourite patterns. As the digits collide, three masses remain, which leave the system. They remain under each other's gravitational influence, but are moving too quickly to return to the canvas within the time of the simulation.
Use this fun inteactive gravity simulator if you want to drop your own masses and watch them orbit.
Fuelled by philanthropy, findings into the workings of BRCA1 and BRCA2 genes have led to groundbreaking research and lifesaving innovations to care for families facing cancer.
This set of 100 one-of-a-kind prints explore the structure of these genes. Each artwork is unique — if you put them all together, you get the full sequence of the BRCA1 and BRCA2 proteins.
The needs of the many outweigh the needs of the few. —Mr. Spock (Star Trek II)
This month, we explore a related and powerful technique to address bias: propensity score weighting (PSW), which applies weights to each subject instead of matching (or discarding) them.
Kurz, C.F., Krzywinski, M. & Altman, N. (2025) Points of significance: Propensity score weighting. Nat. Methods 22:1–3.
Celebrate π Day (March 14th) and sequence digits like its 1999. Let's call some peaks.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
Points of Significance is an ongoing series of short articles about statistics in Nature Methods that started in 2013. Its aim is to provide clear explanations of essential concepts in statistics for a nonspecialist audience. The articles favor heuristic explanations and make extensive use of simulated examples and graphical explanations, while maintaining mathematical rigor.
Topics range from basic, but often misunderstood, such as uncertainty and P-values, to relatively advanced, but often neglected, such as the error-in-variables problem and the curse of dimensionality. More recent articles have focused on timely topics such as modeling of epidemics, machine learning, and neural networks.
In this article, we discuss the evolution of topics and details behind some of the story arcs, our approach to crafting statistical explanations and narratives, and our use of figures and numerical simulations as props for building understanding.
Altman, N. & Krzywinski, M. (2025) Crafting 10 Years of Statistics Explanations: Points of Significance. Annual Review of Statistics and Its Application 12:69–87.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.
If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.
Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.
Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.
P-values combined with estimates of effect size are used to assess the importance of experimental results. However, their interpretation can be invalidated by selection bias when testing multiple hypotheses, fitting multiple models or even informally selecting results that seem interesting after observing the data.
We offer an introduction to principled uses of p-values (targeted at the non-specialist) and identify questionable practices to be avoided.
Altman, N. & Krzywinski, M. (2024) Understanding p-values and significance. Laboratory Animals 58:443–446.