On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.
For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!
If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!
Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.
Welcome to this year's celebration of `\pi` and mathematics. Among the chaos of COVID-19, this year `\pi` Day celebrations are short poetic emissions I call “piku”. They are brief pauses for the time.
Start by reading how piku are constructed and then browse submitted piku. Consider participating by submitting your own piku. All you need is a pen and a few (small) words. Very therapeutic.
But if the words here don't help, immerse yourself in my coronavirus art. It's quite catching.
If you enjoy poetry and words, see how I convert spam into poems in the style of ee cummings and if you like to see words arrange on page, look through my typographic art.
Here are some ideas and exercises to incorporate into your classroom, family dinner, or first date.
Next time you buy something, look at the total amount on the bill and write an nku corresponding to the amount about how your purchase makes you feel. For example, if you spent $13.25 write an nku for `n=1325`.
After one week, write another nku about the object but this time make it into a message for someone whose is considering making the same purchase.
Have everyone write a piku in 60 seconds. They may write as many lines as they want.
Once everyone is finished, have them pass their piku to the person next to them to read outloud.
Divide the digits of `\pi` into triplets and assign everyone in the group a different triplet.
Have them write a nku for that triplet. Make a single piku by assembling the nkus according to the order of the triplets.
For example, if you have three people you would assign the triplets 314, 159, 265.
For continuity, have everyone incorporate a given word in their nku or make their nku about have a specific theme.
Have everyone write their birth date in DDMMYYYY format and create an nku for the number.
Remember zeros are lines with zero syllables and act as verse separators.
Create a calendar by writing a different nku for each day/month combination (DDMM) in the year. Assemble these in a stack.
For example, for March 14th, the digit is 1403 and one possible nku is
This is a long-term project.
Celebrate π Day (March 14th) and sequence digits like its 1999. Let's call some peaks.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
Points of Significance is an ongoing series of short articles about statistics in Nature Methods that started in 2013. Its aim is to provide clear explanations of essential concepts in statistics for a nonspecialist audience. The articles favor heuristic explanations and make extensive use of simulated examples and graphical explanations, while maintaining mathematical rigor.
Topics range from basic, but often misunderstood, such as uncertainty and P-values, to relatively advanced, but often neglected, such as the error-in-variables problem and the curse of dimensionality. More recent articles have focused on timely topics such as modeling of epidemics, machine learning, and neural networks.
In this article, we discuss the evolution of topics and details behind some of the story arcs, our approach to crafting statistical explanations and narratives, and our use of figures and numerical simulations as props for building understanding.
Altman, N. & Krzywinski, M. (2025) Crafting 10 Years of Statistics Explanations: Points of Significance. Annual Review of Statistics and Its Application 12:69–87.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.
If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.
Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.
Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.
P-values combined with estimates of effect size are used to assess the importance of experimental results. However, their interpretation can be invalidated by selection bias when testing multiple hypotheses, fitting multiple models or even informally selecting results that seem interesting after observing the data.
We offer an introduction to principled uses of p-values (targeted at the non-specialist) and identify questionable practices to be avoided.
Altman, N. & Krzywinski, M. (2024) Understanding p-values and significance. Laboratory Animals 58:443–446.
Variability is inherent in most biological systems due to differences among members of the population. Two types of variation are commonly observed in studies: differences among samples and the “error” in estimating a population parameter (e.g. mean) from a sample. While these concepts are fundamentally very different, the associated variation is often expressed using similar notation—an interval that represents a range of values with a lower and upper bound.
In this article we discuss how common intervals are used (and misused).
Altman, N. & Krzywinski, M. (2024) Depicting variability and uncertainty using intervals and error bars. Laboratory Animals 58:453–456.
We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.