2024 π Daylatest newsbuy art
Poetry is just the evidence of life. If your life is burning well, poetry is just the ashLeonard Cohenburn somethingmore quotes
very clickable
visualization + math

π Day 2024 Art Posters - A community garden of digits of π
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
2024 π DAY | 768 digits of `\pi` as a garden at night. Explore the gardens (BUY ARTWORK)

`\pi` Day 2014 Art Posters


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2021 π DAY | Good things grow for those who wait.' edition.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2019 π DAY | Hundreds of digits, hundreds of languages and a special kids' edition.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2018 π DAY | Street maps to new destinations.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 π DAY | Imagine the sky in a new way.


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 π APPROXIMATION DAY | What would happen if about right was right.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 π DAY | These digits really fall for each other.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 π DAY | A transcendental experience.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 π APPROXIMATION DAY | Spirals into roughness.


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 π DAY | Hypnotizes you into looking.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 π DAY | Come into the fold.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 π DAY | Where it started.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
CIRCULAR π ART | And other distractions.

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

Most of the art is available for purchase as framed prints and, yes, even pillows. Sleep's never been more important — I take custom requests.

For the 2014 `\pi` day, two styles of posters are available: folded paths and frequency circles.

The folded paths show `\pi` on a path that maximizes adjacent prime digits and were created using a protein-folding algorithm.

The frequency circles colourfully depict the ratio of digits in groupings of 3 or 6. Oh, look, there's the Feynman Point!

Explore the Feynman Point and other such artefacts in `\pi` using René Hansen's interactive version of this year's posters.

The Feynman Point

The Feynman Point is the first place where 6 9s occur in π . This happens at digit 762, which is much sooner than expected. Here is π to 1,000 decimal places showing the location of the Feynman point.

3.1415926535 8979323846 2643383279 5028841971 6939937510  : 50
  5820974944 5923078164 0628620899 8628034825 3421170679  : 100
  8214808651 3282306647 0938446095 5058223172 5359408128  : 150
  4811174502 8410270193 8521105559 6446229489 5493038196  : 200
  4428810975 6659334461 2847564823 3786783165 2712019091  : 250
  4564856692 3460348610 4543266482 1339360726 0249141273  : 300
  7245870066 0631558817 4881520920 9628292540 9171536436  : 350
  7892590360 0113305305 4882046652 1384146951 9415116094  : 400
  3305727036 5759591953 0921861173 8193261179 3105118548  : 450
  0744623799 6274956735 1885752724 8912279381 8301194912  : 500

  9833673362 4406566430 8602139494 6395224737 1907021798  : 550
  6094370277 0539217176 2931767523 8467481846 7669405132  : 600
  0005681271 4526356082 7785771342 7577896091 7363717872  : 650
  1468440901 2249534301 4654958537 1050792279 6892589235  : 700
  4201995611 2129021960 8640344181 5981362977 4771309960  : 750
  5187072113 4999999837 2978049951 0597317328 1609631859  : 800
  5024459455 3469083026 4252230825 3344685035 2619311881  : 850
  7101000313 7838752886 5875332083 8142061717 7669147303  : 900
  5982534904 2875546873 1159562863 8823537875 9375195778  : 950
  1857780532 1712268066 1300192787 6611195909 2164201989  : 1000

As the story goes, Feynman said that he'd like to memorize π up to the first 6 9s so that he could finish the recitation with "nine nine nine nine nine nine and so on". To find a scheme that suggests that π is rational is mathematical humor of the highest order.

We can ask a general question — where is the first place where digit d occurs n times? For example, where do we see the first 5555 (d=5,n=4) or 777777 (d=7,n=6) .

I look into these kinds of locations in π below. If you are interested in integer sequences in general, see the on-line encyclopedia of integer sequences (OEIS)

(d,n) points in π — sequences of repeating digits

I call a location at which digit d is seen n times in a row the (d,n) point. The Feynman point is a specific case — it is a (d=9,n=6) point.

One can talk about all the (d,n) points (i.e. (d,n,0) , (d,n,1) , (d,n,2) ...), which is the set of all locations at which d appears n times. It should be clear from the context whether one point is being referenced, or a set of points.

We can add a location index i to refer to a specific instance of the sequence. The ith appearance of the digit sequence is (d,n,i) . If we're talking about a single point and i is not specified then i=0 is assumed, which refers to the first appearance of the sequence for a given d and n. That is, (d,n) = (d,n,i=0) .

The point (d,1) trivially corresponds to the first occurence of digit d.

Below is a list of all (d,n=6,i=0) points.

 d n  i sequence position .....(n x d) .....
 1 6  0   111111   255945 62417(111111)75895
 2 6  0   222222   963024 87437(222222)85444
 4 6  0   444444   828499 02846(444444)66922
 5 6  0   555555   244453 33233(555555)69581
 6 6  0   666666   252499 58934(666666)88391
 7 6  0   777777   399579 18074(777777)98344
 8 6  0   888888   222299 10985(888888)35254
 9 6  0   999999      762 21134(999999)83729 # Feynman Point

examples of (d,n) points in first 1,000,000 digits of π

There are 49 (d,n,i=0) points in the first 1,000,000 digits of π for n>1. For example, the first (d=0,n=4) , which is the first 0000, occurs at digit 13,390 (...93095000090715). The longest sequence of d=0 happens for n=7(d=0,n=7,i=0) is at position 710,100 (...73537333333386381).

 d n  i    n x d position ...(n x d)...
 0 2  0       00      307 24587(00)66063
 1 2  0       11       94 25342(11)70679
 2 2  0       22      135 55058(22)31725
 3 2  0       33       24 46264(33)83279
 4 2  0       44       59 09749(44)59230
 5 2  0       55      130 44609(55)05822
 6 2  0       66      117 28230(66)47093
 7 2  0       77      559 43702(77)05392
 8 2  0       88       34 79502(88)41971
 9 2  0       99       44 71693(99)37510
 0 3  0      000      601 05132(000)56812
 1 3  0      111      153 12848(111)74502
 2 3  0      222     1735 99219(222)18427
 3 3  0      333     1698 39414(333)45477
 4 3  0      444     2707 42858(444)79526
 5 3  0      555      177 52110(555)96446
 6 3  0      666     2440 49954(666)72782
 7 3  0      777     4575 94764(777)26224
 8 3  0      888     4985 08099(888)68741
 9 3  0      999     2949 19217(999)83910
 0 4  0     0000    13390 93095(0000)90715
 1 4  0     1111    12700 42144(1111)26358
 2 4  0     2222     4902 35136(2222)47715
 3 4  0     3333    66846 31487(3333)67147
 4 4  0     4444    54525 11793(4444)82014
 5 4  0     5555    33172 96839(5555)68686
 6 4  0     6666    21880 23047(6666)72174
 7 4  0     7777     1589 28909(7777)27938
 8 4  0     8888     4751 16274(8888)00786
 9 4  0     9999    17988 98955(9999)11209
 0 5  0    00000    17534 66768(00000)10652
 1 5  0    11111    32788 46584(11111)57758
 2 5  0    22222    65260 99725(22222)80801
 3 5  0    33333    28467 52392(33333)64743
 4 5  0    44444   808650 64849(44444)73161
 5 5  0    55555    24466 89742(55555)16076
 6 5  0    66666    48439 71972(66666)42267
 7 5  0    77777   162248 47779(77777)18415
 8 5  0    88888   213245 09581(88888)03131
 9 5  0    99999    19446 21285(99999)39961
 1 6  0   111111   255945 62417(111111)75895
 2 6  0   222222   963024 87437(222222)85444
 4 6  0   444444   828499 02846(444444)66922
 5 6  0   555555   244453 33233(555555)69581
 6 6  0   666666   252499 58934(666666)88391
 7 6  0   777777   399579 18074(777777)98344
 8 6  0   888888   222299 10985(888888)35254
 9 6  0   999999      762 21134(999999)83729
 3 7  0  3333333   710100 73537(3333333)86381

When we sort this list by position, we can see just how unusual (i.e. early) the Feynman Point is. We also see (d,n=2) , (d,n=3) , (d,n=4) and (d,n=5) points for all digits d) in the first 1,000,000 digits.

 3 2  0       33       24 46264(33)83279      # first n=2
 8 2  0       88       34 79502(88)41971
 9 2  0       99       44 71693(99)37510
 4 2  0       44       59 09749(44)59230
 1 2  0       11       94 25342(11)70679
 6 2  0       66      117 28230(66)47093
 5 2  0       55      130 44609(55)05822
 2 2  0       22      135 55058(22)31725
 1 3  0      111      153 12848(111)74502     # first n=3
 5 3  0      555      177 52110(555)96446
 0 2  0       00      307 24587(00)66063
 7 2  0       77      559 43702(77)05392      #  last n=2
 0 3  0      000      601 05132(000)56812
 9 6  0   999999      762 21134(999999)83729  # first n=6 (Feynman Point)
 7 4  0     7777     1589 28909(7777)27938    # first n=4
 3 3  0      333     1698 39414(333)45477
 2 3  0      222     1735 99219(222)18427
 6 3  0      666     2440 49954(666)72782
 4 3  0      444     2707 42858(444)79526
 9 3  0      999     2949 19217(999)83910
 7 3  0      777     4575 94764(777)26224
 8 4  0     8888     4751 16274(8888)00786
 2 4  0     2222     4902 35136(2222)47715
 8 3  0      888     4985 08099(888)68741     #  last n=3
 1 4  0     1111    12700 42144(1111)26358
 0 4  0     0000    13390 93095(0000)90715
 0 5  0    00000    17534 66768(00000)10652   # first n=5
 9 4  0     9999    17988 98955(9999)11209
 9 5  0    99999    19446 21285(99999)39961
 6 4  0     6666    21880 23047(6666)72174
 5 5  0    55555    24466 89742(55555)16076
 3 5  0    33333    28467 52392(33333)64743
 1 5  0    11111    32788 46584(11111)57758
 5 4  0     5555    33172 96839(5555)68686
 6 5  0    66666    48439 71972(66666)42267
 4 4  0     4444    54525 11793(4444)82014
 2 5  0    22222    65260 99725(22222)80801
 3 4  0     3333    66846 31487(3333)67147    #  last n=4
 7 5  0    77777   162248 47779(77777)18415  
 8 5  0    88888   213245 09581(88888)03131
 8 6  0   888888   222299 10985(888888)35254
 5 6  0   555555   244453 33233(555555)69581
 6 6  0   666666   252499 58934(666666)88391
 1 6  0   111111   255945 62417(111111)75895
 7 6  0   777777   399579 18074(777777)98344
 3 7  0  3333333   710100 73537(3333333)86381 # first n=7
 4 5  0    44444   808650 64849(44444)73161   #  last n=5
 4 6  0   444444   828499 02846(444444)66922
 2 6  0   222222   963024 87437(222222)85444

when do we expect (d,n) points?

Any given position in π , 10n different combinations of n digits can appear. In only one of them are all the digits the same and equal to d. Thus, the chance of seeing (d,n) at any position for any given d is p=10n.

The probability of not seeing a (d,n) point at a location for a given d is 1-p.

Thus the probability of not seeing a point at k locations and then seeing one at k+1 location is (1-p)kp. This is the definition of the geometric distribution.

For example, the question "how many times must we throw a die until a 1 appears?" can be addressed by this distribution. Here p=1/6, assuming the die is fair. The probability of seeing a 1 for the first time on the k toss is

k   P(X=k)
1   16.7% = (1-1/6)0 * 1/6
2   13.8% = (1-1/6)1 * 1/6 
3   11.6% = (1-1/6)2 * 1/6  
4    9.6% = (1-1/6)3 * 1/6 
5    6.7% = (1-1/6)4 * 1/6 
6    5.6% = (1-1/6)5 * 1/6 
...

The cumulative probability P(Xk) gives us the chance of seeing a 1 for the first time on the 1, 2, 3 ... or k toss). 1-P(Xk) is the chance of not seeing a 1 in the first 1, 2, 3 ... k tosses.

k   P(X≤k)   1-P(X≤k)
1   16.7%    83.3%
2   30.6%    69.4%
3   42.1%    57.9%
4   51.8%    48.2%
5   59.8%    40.2%
6   66.5%    33.5%
...

We can apply this calculation to the probability of observing a (d,n) point for the first time. Let's pick (d=9,n=6) . Using p=10–6, let's look at 1-P(Xk). Values in the table below for P are shown to one significant digit, except for the Feynman Point position k=962.

k      P(X≤k)     1-P(X≤k)    
1      0.000001   0.999999
10     0.00001    0.99999
100    0.0001     0.9999
962    0.000962   0.999037
1000   0.001      0.999
10000  0.01       0.99
100000 0.1        0.9
693147 0.5        0.5

Now we know just how unlikely the Feynman Point is. The chance of observing 6 9s in the first 962 digits is about 0.000962.

These probabilities are approximate because probability that a sequence of n digits appears at any given position is correlated across a window of n-1 digits. For example if we see (d=9,6) at position j then the probability of seeing (d=9,6) at position j+1 is 1/10, not 10–6, because we are guaranteed the first 5 9s.

all (d,n) points in 268 million digits of π

If you're interested in more (d,n) points, I calculated all for lengths n≥3 for the first ~268 million digits of π — you can download the complete list of the 2.42 million (d,n) points.

Most of these points are (d,n=3) (2.17 million). The count as function of n is

n  number of (d,n) points
3  2174839
4  217431
5  21749
6  2153
7  204
8  19
9  3

The Feynman Point is (d=9,n=6,i=0) . With 268 million digits, we can find up to (d=9,n=8,i=0) — the first places in which 8 9's appear in a row. All the (d=9,n,i=9) points in the first 268 million digits of π are

 9 3  0      999     2949 19217(999)83910
 9 4  0     9999    17988 98955(9999)11209
 9 5  0    99999    19446 21285(99999)39961
 9 6  0   999999      762 21134(999999)83729
 9 7  0  9999999  1722776 09713(9999999)31766
 9 8  0 99999999 36356642 15746(99999999)54228

The longest sequences are for n=8 and 9, of which there are 50. We see a (d,n=8,0) point for all d.

 0 8  0 00000000 172330850 65581(00000000)12202
 0 8  1 00000000 184688988 50614(00000000)27944
 1 8  0 11111111 159090113 46225(11111111)09751
 1 8  1 11111111 174624972 36529(11111111)76023
 1 8  2 11111111 199394968 58734(11111111)25842
 2 8  0 22222222 175820910 95134(22222222)07695
 3 8  0 33333333 36488176 81791(33333333)25108
 3 8  1 33333333 248922246 51334(33333333)47253
 4 8  0 44444444 22931745 74369(44444444)36403
 4 8  1 44444444 65122865 35213(44444444)82112
 4 8  2 44444444 221749424 95631(44444444)79916
 5 8  0 55555555 168743355 75041(55555555)01882
 6 8  0 66666666 55616210 64263(66666666)81935
 6 8  1 66666666 129423072 80429(66666666)81580
 6 8  2 66666666 160301327 23994(66666666)89064
 7 8  0 77777777 82144203 84454(77777777)83966
 8 8  0 88888888 239798471 04446(88888888)16169
 9 8  0 99999999 36356642 15746(99999999)54228
 9 8  1 99999999 66780105 26137(99999999)31798
 6 9  0 666666666 45681781 79094(666666666)71734
 7 9  0 777777777 24658601 85304(777777777)24846
 8 9  0 888888888 46663520 87842(888888888)07509

subsequences of π in 268 million digits of π

Finally, it's interesting to see where subsequences of π occurs in π . Because π is random and non-terminating, it has infinitely many subsequences of itself in it — this is hard to think about.

In the first 268 million digits of π you see subsequences up to 8 digits, not counting the trivial one that starts at zero.

       3 1  0        9 59265(3)58979
      31 2  0      137 05822(31)72535
     314 3  0     2120 96514(314)29809
    3141 4  0     3496 67110(3141)26711
   31415 5  0    88008 96265(31415)14138
  314159 6  0   176451 24573(314159)78761
 3141592 7  0 25198140 60173(3141592)14513
31415926 8  0 50366472 17005(31415926)09521

We can also find e (2.718281828) up to 9 digits in the first 268 digits of π .

       2  1  0        6 14159(2)65358
      27  2  0       28 43383(27)95028
     271  3  0      241 83165(271)20190
    2718  4  0    11706 24322(2718)85159
   27182  5  0    28024 10077(27182)71874
  271828  6  0    33789 50445(271828)92749
 2718281  7  0  1526800 07421(2718281)53375
27182818  8  0 73154827 92454(27182818)56113
271828182 9  0 246890641 99305(271828182)91617

as well as φ (1.618033989) up to 8 digits,

       1 1  0        1 3(1)41592
      16 2  0       40 84197(16)93993
     161 3  0     1610 70600(161)45249
    1618 4  0     6004 60290(1618)76679
   16180 5  0   105857 23121(16180)99462
  161803 6  0   144979 54397(161803)03956
 1618033 7  0  1205122 51502(1618033)21817
16180339 8  0 19445230 33490(16180339)99933

as well as 1/ φ = 1– φ up to 6 digits.

       0 1  0        32 32795(0)28841
      06 2  0        71 78164(06)28620
     061 3  0       885 38142(061)71776
    0618 4  0     14423 26086(0618)72455
   06180 5  0     84671 08181(06180)21002
  061803 6  0    933127 07779(061803)00371
 0618033 7  0  12074179 53993(0618033)75138
06180339 8  0 200380161 62492(06180339)55938

news + thoughts

Propensity score matching

Mon 16-09-2024

I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player

In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Propensity score matching. (read)

If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.

Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.

Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.

Nasa to send our human genome discs to the Moon

Sat 23-03-2024

We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
SANCTUARY PROJECT | A cosmic hello of art, science, and genomes. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
SANCTUARY PROJECT | Benoit Faiveley, founder of the Sanctuary project gives the Sanctuary disc a visual check at CEA LeQ Grenoble (image: Vincent Thomas). (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
SANCTUARY PROJECT | Sanctuary team examines the Life disc at INRIA Paris Saclay (image: Benedict Redgrove) (details)

Comparing classifier performance with baselines

Fri 22-03-2024

All animals are equal, but some animals are more equal than others. —George Orwell

This month, we will illustrate the importance of establishing a baseline performance level.

Baselines are typically generated independently for each dataset using very simple models. Their role is to set the minimum level of acceptable performance and help with comparing relative improvements in performance of other models.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Comparing classifier performance with baselines. (read)

Unfortunately, baselines are often overlooked and, in the presence of a class imbalance, must be established with care.

Megahed, F.M, Chen, Y-J., Jones-Farmer, A., Rigdon, S.E., Krzywinski, M. & Altman, N. (2024) Points of significance: Comparing classifier performance with baselines. Nat. Methods 21:546–548.

Happy 2024 π Day—
sunflowers ho!

Sat 09-03-2024

Celebrate π Day (March 14th) and dig into the digit garden. Let's grow something.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2024 π DAY | A garden of 1,000 digits of π. (details)

How Analyzing Cosmic Nothing Might Explain Everything

Thu 18-01-2024

Huge empty areas of the universe called voids could help solve the greatest mysteries in the cosmos.

My graphic accompanying How Analyzing Cosmic Nothing Might Explain Everything in the January 2024 issue of Scientific American depicts the entire Universe in a two-page spread — full of nothing.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
How Analyzing Cosmic Nothing Might Explain Everything. Text by Michael Lemonick (editor), art direction by Jen Christiansen (Senior Graphics Editor), source: SDSS

The graphic uses the latest data from SDSS 12 and is an update to my Superclusters and Voids poster.

Michael Lemonick (editor) explains on the graphic:

“Regions of relatively empty space called cosmic voids are everywhere in the universe, and scientists believe studying their size, shape and spread across the cosmos could help them understand dark matter, dark energy and other big mysteries.

To use voids in this way, astronomers must map these regions in detail—a project that is just beginning.

Shown here are voids discovered by the Sloan Digital Sky Survey (SDSS), along with a selection of 16 previously named voids. Scientists expect voids to be evenly distributed throughout space—the lack of voids in some regions on the globe simply reflects SDSS’s sky coverage.”

voids

Sofia Contarini, Alice Pisani, Nico Hamaus, Federico Marulli Lauro Moscardini & Marco Baldi (2023) Cosmological Constraints from the BOSS DR12 Void Size Function Astrophysical Journal 953:46.

Nico Hamaus, Alice Pisani, Jin-Ah Choi, Guilhem Lavaux, Benjamin D. Wandelt & Jochen Weller (2020) Journal of Cosmology and Astroparticle Physics 2020:023.

Sloan Digital Sky Survey Data Release 12

constellation figures

Alan MacRobert (Sky & Telescope), Paulina Rowicka/Martin Krzywinski (revisions & Microscopium)

stars

Hoffleit & Warren Jr. (1991) The Bright Star Catalog, 5th Revised Edition (Preliminary Version).

cosmology

H0 = 67.4 km/(Mpc·s), Ωm = 0.315, Ωv = 0.685. Planck collaboration Planck 2018 results. VI. Cosmological parameters (2018).

Error in predictor variables

Tue 02-01-2024

It is the mark of an educated mind to rest satisfied with the degree of precision that the nature of the subject admits and not to seek exactness where only an approximation is possible. —Aristotle

In regression, the predictors are (typically) assumed to have known values that are measured without error.

Practically, however, predictors are often measured with error. This has a profound (but predictable) effect on the estimates of relationships among variables – the so-called “error in variables” problem.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Error in predictor variables. (read)

Error in measuring the predictors is often ignored. In this column, we discuss when ignoring this error is harmless and when it can lead to large bias that can leads us to miss important effects.

Altman, N. & Krzywinski, M. (2024) Points of significance: Error in predictor variables. Nat. Methods 21:4–6.

Background reading

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nat. Methods 12:999–1000.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nat. Methods 13:541–542 (2016).

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nat. Methods 16:451–452.

Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA
Google whack “vicissitudinal corporealization”
{ 10.9.234.152 }