2025 π Day latest news buy art
Feel the vibe, feel the terror, feel the painHooverphonicMad about you, orchestrally.more quotes
very clickable
visualization + design
If you are interested in color, explore my other color tools, Brewer palettes resources, color blindness palettes and math and an exhausting list of 10,000 color names for all those times you couldn't distinguish between tan hide, sea buckthorn, orange peel, west side, sunshade, california and pizzaz.

Designing for Color blindness

Color choices and transformations for deuteranopia and other afflictions

Here, I help you understand color blindness and describe a process by which you can make good color choices when designing for accessibility.

The opposite of color blindness is seeing all the colors and I can help you find 1,000 (or more) maximally distinct colors.

You can also delve into the mathematics behind the color blindness simulations and learn about copunctal points (the invisible color!) and lines of confusion.

Color blindness R code

R code for converting an RGB color for color blindness. For details see the math tab and the resources section for background reading.

---
title: 'RGB color correction for color blindess: protanopia, deuteranopia, tritanopia'
author: 'Martin Krzywinski'
web: http://mkweb.bcgsc.ca/colorblind
---

```{r}
gamma = 2.4
###############################################
# Linear RGB to XYZ
# https://en.wikipedia.org/wiki/SRGB
XYZ = matrix(c(0.4124564, 0.3575761, 0.1804375,
               0.2126729, 0.7151522, 0.0721750,
               0.0193339, 0.1191920, 0.9503041),
               byrow=TRUE,nrow=3)

SA = matrix(c(0.2126,0.7152,0.0722,
              0.2126,0.7152,0.0722,
              0.2126,0.7152,0.0722),byrow=TRUE,nrow=3)

###############################################
# XYZ to LMS, normalized to D65
# https://en.wikipedia.org/wiki/LMS_color_space
# Hunt, Normalized to D65
LMSD65 = matrix(c( 0.4002, 0.7076, -0.0808,
                   -0.2263, 1.1653,  0.0457,
                    0     , 0     ,  0.9182),
                   byrow=TRUE,nrow=3)
# Hunt, equal-energy illuminants
LMSEQ = matrix(c( 0.38971, 0.68898,-0.07868,
                 -0.22981, 1.18340, 0.04641,
                  0      , 0      , 1      ),
                byrow=TRUE,nrow=3)
# CIECAM97
SMSCAM97 = matrix(c(  0.8951,  0.2664, -0.1614,
                     -0.7502,  1.7135,  0.0367,
                      0.0389, -0.0685,  1.0296),
                  byrow=TRUE,nrow=3)
# CIECAM02
LMSCAM02 = matrix(c( 0.7328, 0.4296, -0.1624,
                    -0.7036, 1.6975,  0.0061,
                     0.0030, 0.0136,  0.9834),
                  byrow=TRUE,nrow=3)

###############################################
# Determine the color blindness correction in LMS space
# under the condition that the correction does not
# alter the appearance of white as well as 
# blue (for protanopia/deuteranopia) or red (for tritanopia).
# For achromatopsia, greyscale conversion is applied
# to the linear RGB values.
getcorrection = function(LMS,type="p",g=gamma) {
  red = matrix(c(255,0,0),nrow=3)
  blue = matrix(c(0,0,255),nrow=3)
  white = matrix(c(255,255,255),nrow=3)
  LMSr = LMS %*% XYZ %*% apply(red,1:2,linearize,g)
  LMSb = LMS %*% XYZ %*% apply(blue,1:2,linearize,g)
  LMSw = LMS %*% XYZ %*% apply(white,1:2,linearize,g)
  if(type == "p") {
    x = matrix(c(LMSb[2,1],LMSb[3,1],
                  LMSw[2,1],LMSw[3,1]),byrow=T,nrow=2)
    y = matrix(c(LMSb[1,1],LMSw[1,1]),nrow=2)
    ab = solve(x) %*% y
    C = matrix(c(0,ab[1,1],ab[2,1],0,1,0,0,0,1),byrow=T,nrow=3)
  } else if (type == "d") {
    x = matrix(c(LMSb[1,1],LMSb[3,1],
                  LMSw[1,1],LMSw[3,1]),byrow=T,nrow=2)
    y = matrix(c(LMSb[2,1],LMSw[2,1]),nrow=2)
    ab = solve(x) %*% y
    C = matrix(c(1,0,0,ab[1,1],0,ab[2,1],0,0,1),byrow=T,nrow=3)
  } else if (type == "t") {
    x = matrix(c(LMSr[1,1],LMSr[2,1],
                  LMSw[1,1],LMSw[2,1]),byrow=T,nrow=2)
    y = matrix(c(LMSr[3,1],LMSw[3,1]),nrow=2)
    ab = solve(x) %*% y
    C = matrix(c(1,0,0,0,1,0,ab[1,1],ab[2,1],0),byrow=T,nrow=3)
  } else if (type == "a" | type == "g") {
    C = matrix(c(0.2126,0.7152,0.0722,
                 0.2126,0.7152,0.0722,
                 0.2126,0.7152,0.0722),byrow=TRUE,nrow=3)
  }
  return(C)
}

# rgb is a column vector
convertcolor = function(rgb,LMS=LMSD65,type="d",g=gamma) {
  C = getcorrection(LMS,type)
  if(type == "a" | type == "g") {
    T = SA
  } else {
    M = LMS %*% XYZ
    Minv = solve(M)
    T = Minv %*% C %*% M
  }
  print(T)
  rgb_converted = T %*% apply(rgb,1:2,linearize,g)
  return(apply(rgb_converted,1:2,delinearize,g))
}

# This function implements the method by Vienot, Brettel, Mollon 1999.
# The approach is the same, just the values are different.
# http://vision.psychol.cam.ac.uk/jdmollon/papers/colourmaps.pdf
convertcolor2 = function(rgb,type="d",g=2.2) {
  xyz = matrix(c(40.9568, 35.5041, 17.9167,
                 21.3389, 70.6743, 7.98680,
                 1.86297, 11.4620, 91.2367),byrow=T,nrow=3)
  lms = matrix(c(0.15514, 0.54312, -0.03286,
                 -0.15514, 0.45684,0.03286,
                 0,0,0.01608),byrow=T,nrow=3)
  rgb = (rgb/255)**g
  if(type=="p") {
    S = matrix(c(0,2.02344,-2.52581,0,1,0,0,0,1),byrow=T,nrow=3)
    rgb = 0.992052*rgb+0.003974
  } else if(type=="d") {
    S = matrix(c(1,0,0,0.494207,0,1.24827,0,0,1),byrow=T,nrow=3)
    rgb = 0.957237*rgb+0.0213814
  } else {
    stop("Only type p,d defined for this function.")
  }
  M = lms %*% xyz
  T = solve(M) %*% S %*% M
  print(T)
  rgb = T %*% rgb
  rgb = 255*rgb**(1/g)
  return(rgb)
}

###############################################
# RGB to Lab
rgb2lab = function(rgb,g=gamma) {
  rgb = apply(rgb,1:2,linearize,g)
  xyz = XYZ %*% rgb
  delta = 6/29
  xyz = xyz / (c(95.0489,100,108.8840)/100)
  f = function(t) {
    if(t > delta**3) {
      return(t**(1/3))
    } else {
      return (t/(3*delta**2) + 4/29)
    }
  }
  L = 116*f(xyz[2]) - 16
  a = 500*(f(xyz[1]) - f(xyz[2]))
  b = 200*(f(xyz[2]) - f(xyz[3]))
  return(matrix(c(L,a,b),nrow=3))
}

# CIE76 (https://en.wikipedia.org/wiki/Color_difference)
deltaE = function(rgb1,rgb2) {
  lab1 = rgb2lab(rgb1)
  lab2 = rgb2lab(rgb2)
  return(sqrt(sum((lab1-lab2)**2)))
}

clip = function(v) {
  return(max(min(v,1),0))
}

###############################################
# RGB to/from linear RGB
#https://en.wikipedia.org/wiki/SRGB
linearize = function(v,g=gamma) {
  if(v <= 0.04045) {
    return(v/255/12.92)
  } else {
    return(((v/255 + 0.055)/1.055)**g)
  }
}

delinearize = function(v,g=gamma) {
  if(v <= 0.003130805) {
    return(255*12.92*clip(v))
  } else {
    return(255*clip(1.055*(clip(v)**(1/g))-0.055))
  }
}
pretty = function(x) {
  noquote(formatC(x,digits=10,format="f",width=9))
}

# a dark red
rgb1 = matrix(c(0,209,253),nrow=3)
# dark green
rgb2 = matrix(c(60,135,0),nrow=3)
# simulate deuteranopia
convertcolor(rgb1,type="d")
convertcolor(rgb2,type="d")
# get color distance before and after simulation
deltaE(rgb1,rgb2)
deltaE(convertcolor(rgb1,type="d"),convertcolor(rgb2,type="d"))
# transformation matrices for each color blindness type
M = LMSD65 %*% XYZ
pretty(solve(M) %*% getcorrection(LMSD65,"p") %*% M)
pretty(solve(M) %*% getcorrection(LMSD65,"d") %*% M)
pretty(solve(M) %*% getcorrection(LMSD65,"t") %*% M)
pretty(SA)
# method by Vienot, Brettel, Mollon, 1999
convertcolor2(rgb1,type="d",g=2.2)
convertcolor2(rgb2,type="d",g=2.2)
```

# a dark red
rgb1 = matrix(c(225,0,30),nrow=3)

# dark green
rgb2 = matrix(c(60,135,0),nrow=3)

# simulate deuteranopia
convertcolor(rgb1,type="d")
         [,1]
[1,] 136.7002
[2,] 136.7002
[3,]   0.0000
convertcolor(rgb2,type="d")
          [,1]
[1,] 116.76071
[2,] 116.76071
[3,]  16.73263
# get color distance before and after simulation
deltaE(rgb1,rgb2)
[1] 116.9496
deltaE(convertcolor(rgb1,type="d"),convertcolor(rgb2,type="d"))
[1] 12.72204
# transformation matrices for each color blindness type
M = LMSD65 %*% XYZ

pretty(solve(M) %*% getcorrection(LMSD65,"p") %*% M)
     [,1]          [,2]         [,3]         
[1,] 0.1705569911  0.8294430089 0.0000000000 
[2,] 0.1705569911  0.8294430089 -0.0000000000
[3,] -0.0045171442 0.0045171442 1.0000000000 

pretty(solve(M) %*% getcorrection(LMSD65,"d") %*% M)
     [,1]          [,2]         [,3]         
[1,] 0.3306600735  0.6693399265 -0.0000000000
[2,] 0.3306600735  0.6693399265 0.0000000000 
[3,] -0.0278553826 0.0278553826 1.0000000000 

pretty(solve(M) %*% getcorrection(LMSD65,"t") %*% M)
     [,1]          [,2]         [,3]         
[1,] 1.0000000000  0.1273988634 -0.1273988634
[2,] -0.0000000000 0.8739092990 0.1260907010 
[3,] 0.0000000000  0.8739092990 0.1260907010 

pretty(SA)
     [,1]         [,2]         [,3]        
[1,] 0.2126000000 0.7152000000 0.0722000000
[2,] 0.2126000000 0.7152000000 0.0722000000
[3,] 0.2126000000 0.7152000000 0.0722000000
# method by Vienot, Brettel, Mollon, 1999
convertcolor2(rgb1,type="d",g=2.2)
            [,1]       [,2]          [,3]
[1,]  0.29275003 0.70724967 -2.978356e-08
[2,]  0.29275015 0.70724997  1.232823e-08
[3,] -0.02233659 0.02233658  1.000000e+00
          [,1]
[1,] 131.81223
[2,] 131.81226
[3,]  36.37274
convertcolor2(rgb2,type="d",g=2.2)
            [,1]       [,2]          [,3]
[1,]  0.29275003 0.70724967 -2.978356e-08
[2,]  0.29275015 0.70724997  1.232823e-08
[3,] -0.02233659 0.02233658  1.000000e+00
          [,1]
[1,] 122.71798
[2,] 122.71801
[3,]  48.34316
news + thoughts

Happy 2025 π Day—
TTCAGT: a sequence of digits

Thu 13-03-2025

Celebrate π Day (March 14th) and sequence digits like its 1999. Let's call some peaks.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2025 π DAY | TTCAGT: a sequence of digits. The digits of π are encoded into DNA sequence and visualized with Sanger sequencing. (details)

Crafting 10 Years of Statistics Explanations: Points of Significance

Sun 09-03-2025

I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player

Points of Significance is an ongoing series of short articles about statistics in Nature Methods that started in 2013. Its aim is to provide clear explanations of essential concepts in statistics for a nonspecialist audience. The articles favor heuristic explanations and make extensive use of simulated examples and graphical explanations, while maintaining mathematical rigor.

Topics range from basic, but often misunderstood, such as uncertainty and P-values, to relatively advanced, but often neglected, such as the error-in-variables problem and the curse of dimensionality. More recent articles have focused on timely topics such as modeling of epidemics, machine learning, and neural networks.

In this article, we discuss the evolution of topics and details behind some of the story arcs, our approach to crafting statistical explanations and narratives, and our use of figures and numerical simulations as props for building understanding.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Crafting 10 Years of Statistics Explanations: Points of Significance. (read)

Altman, N. & Krzywinski, M. (2025) Crafting 10 Years of Statistics Explanations: Points of Significance. Annual Review of Statistics and Its Application 12:69–87.

Propensity score matching

Mon 16-09-2024

I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player

In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Propensity score matching. (read)

If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.

Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.

Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.

Understanding p-values and significance

Tue 24-09-2024

P-values combined with estimates of effect size are used to assess the importance of experimental results. However, their interpretation can be invalidated by selection bias when testing multiple hypotheses, fitting multiple models or even informally selecting results that seem interesting after observing the data.

We offer an introduction to principled uses of p-values (targeted at the non-specialist) and identify questionable practices to be avoided.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Understanding p-values and significance. (read)

Altman, N. & Krzywinski, M. (2024) Understanding p-values and significance. Laboratory Animals 58:443–446.

Depicting variability and uncertainty using intervals and error bars

Thu 05-09-2024

Variability is inherent in most biological systems due to differences among members of the population. Two types of variation are commonly observed in studies: differences among samples and the “error” in estimating a population parameter (e.g. mean) from a sample. While these concepts are fundamentally very different, the associated variation is often expressed using similar notation—an interval that represents a range of values with a lower and upper bound.

In this article we discuss how common intervals are used (and misused).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Depicting variability and uncertainty using intervals and error bars. (read)

Altman, N. & Krzywinski, M. (2024) Depicting variability and uncertainty using intervals and error bars. Laboratory Animals 58:453–456.

Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA
Google whack “vicissitudinal corporealization”
{ 10.9.234.152 }