art
+ literature
▲ 1,709 quotes and all is well.
The archive contains 1,709 quotes. From Dorothy Parker to Pinky and Brain, you're sure to find something special.
There are quote collections about
love,
heart,
desire,
life,
death,
god,
mind,
science.
Feeling lucky? Read 10 random quotes. Well, will you, punk?
All quotes about science
280
Science is a cemetery of dead ideas.
M. de Unamuno
735
As soon as questions of will or decision or reason or choice of action arise, human science is at a loss.
Noam Chomsky
870
The great tragedy of Science—the slaying of a beautiful hypothesis by an ugly fact.
T.H. Huxley
Biogenesis and Abiogenesis
1466
Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?
Stephen Hawking
A Brief History of Time
1467
Science can purify religion from error and superstition. Religion can purify science from idolatry and false absolutes.
Pope John Paul II
1561
In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.
Paul Dirac
Mathematical Circles Adieu by H. Eves [quoted]
1607
Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry... if mathematical analysis should ever hold a prominent place in chemistry — an aberration which is happily almost impossible — it would occasion a rapid and widespread degeneration of that science.
Auguste Comte
Cours de Philosophie Positive (1830)
1609
Biology is the only science in which multiplication means the same thing as division.
1610
Science has proof without any certainty. Creationists have certainty without any proof.
Ashley Montague
1625
This isn’t a rare scene in science or technology. This is the commonest scene of all. Just plain stuck. In traditional maintenance this is the worst of all moments, so bad that you have avoided even thinking about it before you come to it.
Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance
1630
Art is Science in Love.
E.F. Weisslitz
1662
A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals.
Lewis Thomas
The Medusa and the Snail: More Notes of a Biology Watcher
1665
How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers.
Isaac Asimov
The Roving Mind (Ch 25)
news
+ thoughts
Mon 17-03-2025
The needs of the many outweigh the needs of the few. —Mr. Spock (Star Trek II)
This month, we explore a related and powerful technique to address bias: propensity score weighting (PSW), which applies weights to each subject instead of matching (or discarding) them.
▲ Nature Methods Points of Significance column: Propensity score weighting.
(
read)
Kurz, C.F., Krzywinski, M. & Altman, N. (2025) Points of significance: Propensity score weighting. Nat. Methods 22:1–3.
Thu 13-03-2025
Celebrate Ï Day (March 14th) and sequence digits like its 1999. Let's call some peaks.
▲ 2025 Ï DAY | TTCAGT: a sequence of digits. The digits of Ï are encoded into DNA sequence and visualized with Sanger sequencing.
(
details)
Sun 09-03-2025
I donât have good luck in the match points. —Rafael Nadal, Spanish tennis player
Points of Significance is an ongoing series of short articles about statistics in Nature Methods that started in 2013. Its aim is to provide clear explanations of essential concepts in statistics for a nonspecialist audience. The articles favor heuristic explanations and make extensive use of simulated examples and graphical explanations, while maintaining mathematical rigor.
Topics range from basic, but often misunderstood, such as uncertainty and P-values, to relatively advanced, but often neglected, such as the error-in-variables problem and the curse of dimensionality. More recent articles have focused on timely topics such as modeling of epidemics, machine learning, and neural networks.
In this article, we discuss the evolution of topics and details behind some of the story arcs, our approach to crafting statistical explanations and narratives, and our use of figures and numerical simulations as props for building understanding.
▲ Crafting 10 Years of Statistics Explanations: Points of Significance.
(
read)
Altman, N. & Krzywinski, M. (2025) Crafting 10 Years of Statistics Explanations: Points of Significance. Annual Review of Statistics and Its Application 12:69–87.
Mon 16-09-2024
I donât have good luck in the match points. —Rafael Nadal, Spanish tennis player
In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.
▲ Nature Methods Points of Significance column: Propensity score matching.
(
read)
If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.
Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.
Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.
Tue 24-09-2024
P-values combined with estimates of effect size are used to assess the importance of experimental results. However, their interpretation can be invalidated by selection bias when testing multiple hypotheses, fitting multiple models or even informally selecting results that seem interesting after observing the data.
We offer an introduction to principled uses of p-values (targeted at the non-specialist) and identify questionable practices to be avoided.
▲ Understanding p-values and significance.
(
read)
Altman, N. & Krzywinski, M. (2024) Understanding p-values and significance. Laboratory Animals 58:443–446.