2025 π Day latest news buy art
Sun is on my face ...a beautiful day without you.Royskoppbe apartmore quotes
very clickable
statistics + data
The Nature Methods Points of View column column offers practical advice in design and data presentation for the busy scientist.
With the publication of Uncertainty and the Management of Epidemics, we celebrate our 50th column! Since 2013, our Nature Methods Points of Significance has been offering crisp explanations and practical suggestions about best practices in statistical analysis and reporting. To all our readers and coauthors: thank you and see you in the next column!

Nature Methods: Points of Significance

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Points of Significance column in Nature Methods. (Launch of Points of Significance)
62 | Kurz, C.F., Krzywinski, M. & Altman, N. (2025) Points of significance: Propensity score weighting. Nature Methods 22:1–3.
61 | Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nature Methods 21:1770–1772.
60 | Megahed, F.M, Chen, Y-J., Jones-Farmer, A., Rigdon, S.E., Krzywinski, M. & Altman, N. (2024) Points of significance: Comparing classifier performance with baselines. Nature Methods 21:546–548.
59 | Altman, N. & Krzywinski, M. (2024) Points of significance: Error in predictor variables. Nature Methods 21:4–6.
58 | Derry, A., Krzywinski, M. & Altman, N. (2023) Points of significance: Convolutional neural networks. Nature Methods 20:1269–1270.
57 | Derry, A., Krzywinski, M. & Altman, N. (2023) Points of significance: Neural network primer. Nature Methods 20:165–167.
56 | Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M.& Altman, N. (2022) Points of significance: Regression modelling of time-to-event data with censoring. Nature Methods 19:1513–1515.
55 | Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M.& Altman, N. (2022) Points of significance: Survival analysis — time-to-event data and censoring. Nature Methods 19:906–908.
54 | Megahed, F.M, Chen, Y-J., Megahed, A., Ong, Y., Altman, N. & Krzywinski, M. (2021) Points of significance: The class imbalance problem. Nature Methods 18:1270–1272.
53 | Altman, N. & Krzywinski, M. (2021) Points of significance: Graphical assessments of tests and classifiers. Nature Methods 18:840–842
52 | Altman, N. & Krzywinski, M. (2021) Points of significance: Testing for rare conditions. Nature Methods 18:224–225.
51 | Voelkl, B., Würbel, H., Krzywinski, M. & Altman, N. (2021) Points of significance: The standardization fallacy. Nature Methods 18:5–7.
50 | Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Uncertainty and the management of epidemics. Nature Methods 17:867–868.
49 | Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. Nature Methods 17:557–558.
48 | Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.
47 | Grewal, J., Krzywinski, M. & Altman, N. (2020) Points of significance: Markov models — training and evaluation of hidden Markov models. Nature Methods 17:121–122.
46 | Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Hidden Markov models. Nature Methods 16:795–796.
45 | Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov chains. Nature Methods 16:663–664.
44 | Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nature Methods 16:451–452.
43 | Greco, L., Luta, G., Krzywinski, M. & Altman, N. (2019) Points of significance: Analyzing outliers: Robust methods to the rescue. Nature Methods 16:275–276.
42 | Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments Nature Methods 16:211–212.
41 | Altman, N. & Krzywinski, M. (2018) Points of significance: Predicting with confidence and tolerance Nature Methods 15:843–844.
40 | Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design Nature Methods 15:559–560.
39 | Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:299–400.
38 | Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of significance: Statistics vs machine learning. Nature Methods 15:233–234.
37 | Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of significance: Machine learning: supervised methods. Nature Methods 15:5–6.
36 | Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of significance: Machine learning: a primer. Nature Methods 14:1119–1120.
35 | Altman, N. & Krzywinski, M. (2017) Points of significance: Ensemble methods: Bagging and random forests. Nature Methods 14:933–934.
34 | Krzywinski, M. & Altman, N. (2017) Points of significance: Classification and regression trees. Nature Methods 14:757–758.
33 | Lever, J., Krzywinski, M. & Altman, N. (2017) Points of significance: Principal component analysis. Nature Methods 14:641–642.
32 | Altman, N. & Krzywinski, M. (2017) Points of significance: Clustering. Nature Methods 14:545–546.
31 | Altman, N. & Krzywinski, M. (2017) Points of significance: Tabular data. Nature Methods 14:329–330.
30 | Altman, N. & Krzywinski, M. (2017) Points of significance: Interpreting P values. Nature Methods 14:213–214.
29 | Altman, N. & Krzywinski, M. (2017) Points of significance: P values and the search for significance. Nature Methods 14:3–4.
28 | Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Regularization. Nature Methods 13:803–804.
27 | Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Model selection and overfitting. Nature Methods 13:703–704.
26 | Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Classifier evaluation. Nature Methods 13:603–604.
25 | Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nature Methods 13:541–542.
24 | Altman, N. & Krzywinski, M. (2016) Points of significance: Regression diagnostics. Nature Methods 13:385–386.
23 | Altman, N. & Krzywinski, M. (2016) Points of significance: Analyzing outliers: Influential or nuisance. Nature Methods 13:281–282.
22 | Krzywinski, M. & Altman, N. (2015) Points of significance: Multiple linear regression. Nature Methods 12:1103–1104.
21 | Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nature Methods 12:999–1000.
20 | Altman, N. & Krzywinski, M. (2015) Points of significance: Association, correlation and causation. Nature Methods 12:899–900.
19 | Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of significance: Bayesian networks. Nature Methods 12:799–800.
18 | Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N. (2015) Points of significance: Sampling distributions and the bootstrap. Nature Methods 12:477–478.
17 | Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of significance: Bayesian statistics. Nature Methods 12:277–278.
16 | Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of significance: Bayes' theorem. Nature Methods 12:277–278.
15 | Altman, N. & Krzywinski, M. (2015) Points of significance: Split plot design. Nature Methods 12:165–166.
14 | Altman, N. & Krzywinski, M. (2015) Points of significance: Sources of variation. Nature Methods 12:5–6.
13 | Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.
12 | Krzywinski, M., Altman, N. & Blainey, P. (2014) Points of significance: Nested designs. Nature Methods 11:977–978.
11 | Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of significance: Replication. Nature Methods 11:879–880.
10 | Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.
9 | Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.
8 | Krzywinski, M. & Altman, N. (2014) Points of significance: Non-parametric tests. Nature Methods 11:467–468.
7 | Krzywinski, M. & Altman, N. (2014) Points of significance: Comparing samples — Part II — Multiple testing. Nature Methods 11:355–356.
6 | Krzywinski, M. & Altman, N. (2014) Points of significance: Comparing samples — Part I — t–tests. Nature Methods 11:215–216.
5 | Krzywinski, M. & Altman, N. (2014) Points of significance: Visualizing samples with box plots. Nature Methods 11:119–120.
4 | Krzywinski, M. & Altman, N. (2013) Points of significance: Power and sample size. Nature Methods 10:1139–1140.
3 | Krzywinski, M. & Altman, N. (2013) Points of significance: Significance, P values and t–tests. Nature Methods 10:1041–1042.
2 | Krzywinski, M. & Altman, N. (2013) Points of significance: Error bars. Nature Methods 10:921–922.
1 | Krzywinski, M. & Altman, N. (2013) Points of significance: Importance of being uncertain. Nature Methods 10:809–810.
news + thoughts

Propensity score weighting

Mon 17-03-2025

The needs of the many outweigh the needs of the few. —Mr. Spock (Star Trek II)

This month, we explore a related and powerful technique to address bias: propensity score weighting (PSW), which applies weights to each subject instead of matching (or discarding) them.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Propensity score weighting. (read)

Kurz, C.F., Krzywinski, M. & Altman, N. (2025) Points of significance: Propensity score weighting. Nat. Methods 22:1–3.

Happy 2025 π Day—
TTCAGT: a sequence of digits

Thu 13-03-2025

Celebrate π Day (March 14th) and sequence digits like its 1999. Let's call some peaks.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2025 π DAY | TTCAGT: a sequence of digits. The digits of π are encoded into DNA sequence and visualized with Sanger sequencing. (details)

Crafting 10 Years of Statistics Explanations: Points of Significance

Sun 09-03-2025

I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player

Points of Significance is an ongoing series of short articles about statistics in Nature Methods that started in 2013. Its aim is to provide clear explanations of essential concepts in statistics for a nonspecialist audience. The articles favor heuristic explanations and make extensive use of simulated examples and graphical explanations, while maintaining mathematical rigor.

Topics range from basic, but often misunderstood, such as uncertainty and P-values, to relatively advanced, but often neglected, such as the error-in-variables problem and the curse of dimensionality. More recent articles have focused on timely topics such as modeling of epidemics, machine learning, and neural networks.

In this article, we discuss the evolution of topics and details behind some of the story arcs, our approach to crafting statistical explanations and narratives, and our use of figures and numerical simulations as props for building understanding.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Crafting 10 Years of Statistics Explanations: Points of Significance. (read)

Altman, N. & Krzywinski, M. (2025) Crafting 10 Years of Statistics Explanations: Points of Significance. Annual Review of Statistics and Its Application 12:69–87.

Propensity score matching

Mon 16-09-2024

I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player

In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Propensity score matching. (read)

If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.

Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.

Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.

Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA
Google whack “vicissitudinal corporealization”
{ 10.9.234.152 }