The never-repeating digits of `\pi` can be approximated by 22/7 = 3.142857
to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!
The `22/7` approximation of `\pi` is more accurate than using the first three digits `3.14`. In light of this, it is curious to point out that `\pi` Approximation Day depicts `\pi` 20% more accurately than the official `\pi` Day! The approximation is accurate within 0.04% while 3.14 is accurate to 0.05%.
For each `m=1...10000` I found `n` such that `m/n` was the best approximation of `\pi`. You can download the entire list, which looks like this
m n m/n relative_error best_seen? 1 1 1.000000000000 0.681690113816 improved 2 1 2.000000000000 0.363380227632 improved 3 1 3.000000000000 0.045070341449 improved 4 1 4.000000000000 0.273239544735 5 2 2.500000000000 0.204225284541 7 2 3.500000000000 0.114084601643 8 3 2.666666666667 0.151173636843 9 4 2.250000000000 0.283802756086 10 3 3.333333333333 0.061032953946 11 4 2.750000000000 0.124647812995 12 5 2.400000000000 0.236056273159 13 4 3.250000000000 0.034507130097 improved 14 5 2.800000000000 0.108732318685 16 5 3.200000000000 0.018591635788 improved 17 5 3.400000000000 0.082253613025 18 5 3.600000000000 0.145915590262 19 6 3.166666666667 0.007981306249 improved 20 7 2.857142857143 0.090543182332 21 8 2.625000000000 0.164436548768 22 7 3.142857142857 0.000402499435 improved 23 7 3.285714285714 0.045875340318 24 7 3.428571428571 0.091348181202 ... 354 113 3.132743362832 0.002816816734 355 113 3.141592920354 0.000000084914 improved 356 113 3.150442477876 0.002816986561 ... 9998 3183 3.141061891298 0.000168946885 9999 3182 3.142363293526 0.000245302310 10000 3183 3.141690229343 0.000031059327
As the value of `m` is increased, better approximations are possible. For example, each of `13/4`, `16/5`, `19/6` and `22/7` are in turn better approximations of `\pi`. The line includes the improved
flag if the approximation is better than others found thus far.
After `22/7`, the next better approximation is at `179/57`.
Out of all the 10,000 approximations, the best one is `355/113`, which is good to 7 digits (6 decimal places).
pi = 3.1415926 355/113 = 3.1415929
I've scanned to beyond `m=1000000` and `355/113` still remains as the only approximation that returns more correct digits than required to remember it.
Here is a sequence of approximations that improve on all previous ones.
1 1 1.000000000000 0.681690113816 improved 2 1 2.000000000000 0.363380227632 improved 3 1 3.000000000000 0.045070341449 improved 13 4 3.250000000000 0.034507130097 improved 16 5 3.200000000000 0.018591635788 improved 19 6 3.166666666667 0.007981306249 improved 22 7 3.142857142857 0.000402499435 improved 179 57 3.140350877193 0.000395269704 improved 201 64 3.140625000000 0.000308013704 improved 223 71 3.140845070423 0.000237963113 improved 245 78 3.141025641026 0.000180485705 improved 267 85 3.141176470588 0.000132475164 improved 289 92 3.141304347826 0.000091770575 improved 311 99 3.141414141414 0.000056822190 improved 333 106 3.141509433962 0.000026489630 improved 355 113 3.141592920354 0.000000084914 improved
For all except one, these approximations aren't all good value for your digits.
For example, `179/57` requires you to remember 5 digits but only gets you 3 digits of `\pi` correct (3.14).
Only `355/113` gets you more digits than you need to remember—you need to memorize 6 but get 7 (3.141592) out of the approximation!
You could argue that `22/7` and `355/113` are the only approximations worth remembering. In fact, go ahead and do so.
It's remarkable that there is no better `m/n` approximation after `355/113` for all `m \le 10000`.
What do we find for `m > 10000`?
Well, we have to move down the values of `m` all the way to 52,163 to find `52163/16604`. But for all this searching, our improvement in accuracy is miniscule—0.2%!
pi 3.141592653589793238 m n m/n relative_error 355 113 3.1415929203 0.00000008491 52163 16604 3.1415923873 0.00000008474
After 52,162 there is a slew improvements to the approximation.
104348 33215 3.1415926539 0.000000000106 208341 66317 3.1415926534 0.0000000000389 312689 99532 3.1415926536 0.00000000000927 833719 265381 3.141592653581 0.00000000000277 1146408 364913 3.14159265359 0.000000000000513 3126535 995207 3.141592653588 0.000000000000364 4272943 1360120 3.1415926535893 0.000000000000129 5419351 1725033 3.1415926535898 0.00000000000000705 42208400 13435351 3.1415926535897 0.00000000000000669 47627751 15160384 3.14159265358977 0.00000000000000512 53047102 16885417 3.14159265358978 0.00000000000000388 58466453 18610450 3.14159265358978 0.00000000000000287
I stopped looking after `m=58,466,453`.
Despite their accuracy, all these approximations require that you remember more or equal the number of digits than they return. The last one above requires you to memorize 17 (9+8) digits and returns only 14 digits of `\pi`.
The only exception to this is `355/113`, which returns 7 digits for its 6.
You can download the first 175 increasingly accurate approximations, calculated to extended precision (up to `58,466,453/18,610,450`).
Celebrate π Day (March 14th) and sequence digits like its 1999. Let's call some peaks.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
Points of Significance is an ongoing series of short articles about statistics in Nature Methods that started in 2013. Its aim is to provide clear explanations of essential concepts in statistics for a nonspecialist audience. The articles favor heuristic explanations and make extensive use of simulated examples and graphical explanations, while maintaining mathematical rigor.
Topics range from basic, but often misunderstood, such as uncertainty and P-values, to relatively advanced, but often neglected, such as the error-in-variables problem and the curse of dimensionality. More recent articles have focused on timely topics such as modeling of epidemics, machine learning, and neural networks.
In this article, we discuss the evolution of topics and details behind some of the story arcs, our approach to crafting statistical explanations and narratives, and our use of figures and numerical simulations as props for building understanding.
Altman, N. & Krzywinski, M. (2025) Crafting 10 Years of Statistics Explanations: Points of Significance. Annual Review of Statistics and Its Application 12:69–87.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.
If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.
Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.
Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.
P-values combined with estimates of effect size are used to assess the importance of experimental results. However, their interpretation can be invalidated by selection bias when testing multiple hypotheses, fitting multiple models or even informally selecting results that seem interesting after observing the data.
We offer an introduction to principled uses of p-values (targeted at the non-specialist) and identify questionable practices to be avoided.
Altman, N. & Krzywinski, M. (2024) Understanding p-values and significance. Laboratory Animals 58:443–446.
Variability is inherent in most biological systems due to differences among members of the population. Two types of variation are commonly observed in studies: differences among samples and the “error” in estimating a population parameter (e.g. mean) from a sample. While these concepts are fundamentally very different, the associated variation is often expressed using similar notation—an interval that represents a range of values with a lower and upper bound.
In this article we discuss how common intervals are used (and misused).
Altman, N. & Krzywinski, M. (2024) Depicting variability and uncertainty using intervals and error bars. Laboratory Animals 58:453–456.
We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.