Together with Alberto Cairo, I presented at the Bloomberg Businessweek Design Conference (highlights) on the topic of design and communication in the sciences.
Alberto, as the journalist, motivated why communication should include access to detail through an engaging narrative. He made the distinction between the specialist (heavy on detail) and the communicator (focus on narrative) and emphasized that the distinction is artificial, though often played out (watch video).
I, as the scientist, underscored the importance of clear communication between scientists. As the specialists, they are often very poor communicators. Pick up any science journal and you'll quickly discover that scientists either aren't good at telling stories or are discouraged to do so by the medium. The consequence is the same: papers read like a wall of text. TL;DR anyone? The quality of visual communication in general ranges from muddled to abysmal (watch video).
We need more leaders in the field, such as Nature Publishing Group, to reward and emphasize good visual communication (e.g. Nature Cancer Review 2013 Figure Calendar).
Our presentations concluded with a 15 minute moderated discussion with Sam Grobart, senior Businesssweek writer. Everyone got a little cheeky. Good fun.
Watch: my presentation, conversation with Alberto Cairo, moderated by Sam Grobart. (Bloomberg TV), Albert Cairo's presentation.
This was a lightning 7 minute talk. I did more planning about what to say than I usually do, given that there was virtually no opportunity for any kind of backtracking, and include a running narrative below each slide.
My slides are available as PDF, keynote (zipped) or Quicktime. The format is 16:9 HD.
On 28 Jan 2013, Bloomberg Businessweek Design Issue will capture the ideas from the conference and the personalities that generated them.
During the conference, each talk was captured in a series of sketches by Tom Wujec: my talk sketch and moderated discussion sketch.
I don’t have good luck in the match points. —Rafael Nadal, Spanish tennis player
In many experimental designs, we need to keep in mind the possibility of confounding variables, which may give rise to bias in the estimate of the treatment effect.
If the control and experimental groups aren't matched (or, roughly, similar enough), this bias can arise.
Sometimes this can be dealt with by randomizing, which on average can balance this effect out. When randomization is not possible, propensity score matching is an excellent strategy to match control and experimental groups.
Kurz, C.F., Krzywinski, M. & Altman, N. (2024) Points of significance: Propensity score matching. Nat. Methods 21:1770–1772.
We'd like to say a ‘cosmic hello’: mathematics, culture, palaeontology, art and science, and ... human genomes.
All animals are equal, but some animals are more equal than others. —George Orwell
This month, we will illustrate the importance of establishing a baseline performance level.
Baselines are typically generated independently for each dataset using very simple models. Their role is to set the minimum level of acceptable performance and help with comparing relative improvements in performance of other models.
Unfortunately, baselines are often overlooked and, in the presence of a class imbalance, must be established with care.
Megahed, F.M, Chen, Y-J., Jones-Farmer, A., Rigdon, S.E., Krzywinski, M. & Altman, N. (2024) Points of significance: Comparing classifier performance with baselines. Nat. Methods 21:546–548.
Celebrate π Day (March 14th) and dig into the digit garden. Let's grow something.
Huge empty areas of the universe called voids could help solve the greatest mysteries in the cosmos.
My graphic accompanying How Analyzing Cosmic Nothing Might Explain Everything in the January 2024 issue of Scientific American depicts the entire Universe in a two-page spread — full of nothing.
The graphic uses the latest data from SDSS 12 and is an update to my Superclusters and Voids poster.
Michael Lemonick (editor) explains on the graphic:
“Regions of relatively empty space called cosmic voids are everywhere in the universe, and scientists believe studying their size, shape and spread across the cosmos could help them understand dark matter, dark energy and other big mysteries.
To use voids in this way, astronomers must map these regions in detail—a project that is just beginning.
Shown here are voids discovered by the Sloan Digital Sky Survey (SDSS), along with a selection of 16 previously named voids. Scientists expect voids to be evenly distributed throughout space—the lack of voids in some regions on the globe simply reflects SDSS’s sky coverage.”
Sofia Contarini, Alice Pisani, Nico Hamaus, Federico Marulli Lauro Moscardini & Marco Baldi (2023) Cosmological Constraints from the BOSS DR12 Void Size Function Astrophysical Journal 953:46.
Nico Hamaus, Alice Pisani, Jin-Ah Choi, Guilhem Lavaux, Benjamin D. Wandelt & Jochen Weller (2020) Journal of Cosmology and Astroparticle Physics 2020:023.
Sloan Digital Sky Survey Data Release 12
Alan MacRobert (Sky & Telescope), Paulina Rowicka/Martin Krzywinski (revisions & Microscopium)
Hoffleit & Warren Jr. (1991) The Bright Star Catalog, 5th Revised Edition (Preliminary Version).
H0 = 67.4 km/(Mpc·s), Ωm = 0.315, Ωv = 0.685. Planck collaboration Planck 2018 results. VI. Cosmological parameters (2018).
constellation figures
stars
cosmology