
5/5/2005 4.0.2.1.1 - Sets and Spans 1

4.0.2.1 – Sets and Spans

4.0.2.1.1
Sets and Spans

· handle coordinate elements
· clones
· contigs
· alignments

· easily form intersections and unions of elements

· learn about index sets

5/5/2005 4.0.2.1.1 - Sets and Spans 2

4.0.2.1 – Sets and Spans

Sets, Lists and Spans

An index set is a set whose
elements label those of another
set. Here K is the index set of S.

An intersection of multiple sets is
written as

Union of multiple sets is written
as

A span of a set, S, is defined as

A span of elements, E, is a set
of consecutive objects

A window on the integer line, for
example.

A multiset is a set in which
multiplicity is explicitly ignored.

{1,1,2,5,10}

A multiset has the additional
operation of multiplicity. A list is
an ordered set of elements in
which an object may be another
set or multiset.

A set is a finite or infinite
collection of objects in which
order is of no significance and
multiplicity is usually ignored.

{1,2,5,10}

Common operations are
membership (∈), intersection
(∩), union (∪), or complement
(). The empty set is ∅.

max minS S−

(,) { | }E a b x a x b= ≤ ≤

k
k K

SS
∈

=∪1,2,3
i

i

S
=
∪

,1,2,3
i

i

S∩

S

5/5/2005 4.0.2.1.1 - Sets and Spans 3

4.0.2.1 – Sets and Spans

CPAN’s offerings

· a large number of modules implement various aspects of sets, lists, etc.
· do not write your own implementation – use these excellent resources

search.cpan.org/modlist/Data_and_Data_Types/Set

>

>

>

>

we will
focus on
these

and briefly
look at
these

>

>

5/5/2005 4.0.2.1.1 - Sets and Spans 4

4.0.2.1 – Sets and Spans

Why You Should Care – Part I

· you work with objects that have spatial coordinates (alignments, clones, contigs, etc)
· manipulate objects – intersection, union, difference
· compute coverage, redundancy, gaps

are clones, alignments, etcgenome, G
unique
coverage by
elements

iSiS

1,2,3
i

i

S
=
∪

1,2,3 1,2,3
i i

i i

S G S
= =

= −∪ ∪ gaps in
coverage

5/5/2005 4.0.2.1.1 - Sets and Spans 5

4.0.2.1 – Sets and Spans

Why You Should Care – Part II

· you work with indexed objects (array probes), which may have spatial coordinates, and are
interested in consecutive runs that exhibit a certain characteristic (experimental result)

· 5 consecutive deleted array probes = putative deletion

· identify runs in index sets
· identify probes in runs
· extract coordinates of probes
· map runs to positions

run of 5 in index set of
deleted probes

run of 6 in index set of
amplified probes

1 2 3 4 . . .
P1 P2 P3 P4 . . .

probe index set
probe coordinate set

D := index set of deleted probes
R(D) := all runs in index set
R(D,N) := all runs in index set of length N or greater
for r in R(D,N)
coordinate of first probe in run
p = P(r->min)
coordinate of last probe in run
q = P(r->max)
left position of probe run
p->min
right position of probe run
q->max

5/5/2005 4.0.2.1.1 - Sets and Spans 6

4.0.2.1 – Sets and Spans

Set::IntSpan

· v1.08, Steven McDougall

· manages sets of integers, optimized for sets
that have long runs of consecutive integers

· supports infinite forms
· (-5
· 10-)
· (-)

· spans operator is extremely useful in extracting
runs from unions or intersections

· supports for iterators (first, last, next),
comparisons (equal, equivalent, superset,
subset)

· very clean API

$S = Set::IntSpan->new(“1,5,10-15,20-50”);
$T = Set::IntSpan->new(“2-6,8-16,30-40,45”);

$S->cardinality # 39
for $span ($S->spans) {
$span->run_list # 1 5 10-15 20-50
$span->min # 1 5 10 20
$span->max # 1 5 15 50
$span->cardinality # 1 1 6 31

}

$U = $S->union($T)
$U->run_list # 1-6,8-16,20-50
$U->cardinality # 46

$V = $S->intersect($T)
$V->run_list # 5,10-15,30-40,45
$V->cardinality # 19

$W = $S->diff($T)
$W->run_list # 1,20-29,41-44,46-50
$W->cardinality # 20

$X = $S->union($T)->complement
$X->run_list # (-0,7,17-19,51-)
$X->cardinality # -1

5/5/2005 4.0.2.1.1 - Sets and Spans 7

4.0.2.1 – Sets and Spans

Set::IntSpan in Action

· I have some clones with end sequence coordinates and want to know
· what parts of the genome to these clones represent?
· given a genomic region, which clones lie entirely within this region? partially within the region?
· are what are the largest “holes” in which no clones with coordinates can be found?

clones mapped by BAC
end sequence alignments

region of interest

clones in region

regions represented by clones

regions missed by clones

5/5/2005 4.0.2.1.1 - Sets and Spans 8

4.0.2.1 – Sets and Spans

Constructing Spans from File Coordinates

· read coordinates from a file
· construct a span for each clone
· save the clone spans in an hash of

arrays
· construct a union of spans for each

chromosome – on the fly

· $clonespans{$chr} reference to
list of hashes

· each hash stores clone name and
clone span

· $chrspans{$chr} stores the union
of all clone spans for a given
chromosome

clones.txt
#
name chr start end
RP11-2K22 1 238603586 238769410
RP11-2K23 1 200117141 200294916
RP11-2K24 1 63415083 63586024
#

open(F,”clones.txt”);
my %chrspans;
my %clonespans;

while(<F>) {
chomp;
my ($clone,$chr,$start,$end) = split;

my $clonespan = Set::IntSpan->new(“$start-$end”);

$chrspans{$chr} ||= Set::IntSpan->new();

$chrspans{$chr} = $chrspans{$chr}->union($clonespan);

push(@{$clonespans{$chr}},
{clone=>$clone,span=>$clonespan});

}

5/5/2005 4.0.2.1.1 - Sets and Spans 9

4.0.2.1 – Sets and Spans

Determining Coverage by Coordinates

for my $chr (keys %chrspans) {
my $chrspan = $chrspans{$chr};

total coverage on this chromosome
$chrspan->cardinality;

for my $chrsubspan ($chrspan->spans) {
contiguous regions of coverage
$chrsubspan->cardinality;
$chrsubspan->run_list;
$chrsubspan->min;
$chrsubspan->max;

}

my $entirechr = Set::IntSpan->new(“1-$chrlength”);
my $gapspan = $entirechr->diff($chrspan);

for my $gapsubspan ($gapspan->spans) {
regions missed by clone coverage
$gapsubspan->cardinality;
. . .

}

}

$chrspan

$chrsubspan

$chrsubspan->min

$chrsubspan->max

$chr

$gapspan

$gapsubspan

5/5/2005 4.0.2.1.1 - Sets and Spans 10

4.0.2.1 – Sets and Spans

Finding Overlapping Elements

· do not test for non-empty intersection by
using

· if $a->intersect($b)
· a span is always returned by intersect!
· remember, you get a span object

(therefore evaluates to TRUE) not the size
of the span (which may be 0)

· use
· if $a->intersect($b)->cardinality
· if not $a->intersect($b)->empty

my $regionspan = Set::IntSpan->new(“$mystart-$myend”);
my $regionchr = $mychr;

do we have coverage on this chromosome?
if(exists $chrspans{$regionchr}) {

cycle through the clones on this chromosome
for $clonespandata (@{$clonespans{$regionchr}}) {

my ($clone,$clonespan)
= @{$clonespandata}{qw(clone clonespan)};

intersect clone with region
my $intersection =

$clonespan->intersect($regionspan);

is the intersection non-empty?
next unless $intersection->cardinality;

what fraction of the clone intersects the region?
my $fraction = $intersection->cardinality /

$clonespan->cardinality;

if ($fraction == 1) {
clone falls within region span

} elsif ($fraction >= 0.5) {
most of clone falls within region span

} else {
less than half of clone overlaps with region

}

}
}

$regionspan
$clonespan

5/5/2005 4.0.2.1.1 - Sets and Spans 11

4.0.2.1 – Sets and Spans

Drawing Tilings

· did you ever wonder how tilings are
drawn in genome browsers?

· elements are drawn in layers, as not to
overlap with one another in a given layer

· use Set::IntSpan

· set up N spans, one for each layer

· for each element to draw, find the first
span, n, that does not overlap with the
element

· draw the element in layer n
· add the element to the span,

· span(n)->union(element)

· you may want to pad the element to get
small spacing

5/5/2005 4.0.2.1.1 - Sets and Spans 12

4.0.2.1 – Sets and Spans

Index Sets

· sometimes intersect won’t help you because your individual objects don’t intersect (e.g. SNPs –
single base pair positions)

· you are interested in consecutive runs of objects with a given characteristic

· suppose I have a collection of positions (e.g. SNPs from array)
· each SNP has some identifier (name) and a value associated with it (-1, 0 or 1), for example.
· let each SNP be represented by a HASH, keyed by id, pos and value.
· assume all SNPs are on the same chromosome

· if not, use a hash to store SNPs for each chromosome

$snp = {id=>ID, pos=>POS, value=>VALUE}

$snp->{id} # SNP_123
$snp->{pos} # 23523829
$snp->{value} # 1

5/5/2005 4.0.2.1.1 - Sets and Spans 13

4.0.2.1 – Sets and Spans

Associate Index with Each SNP

· we can’t intersect two SNP positions,
since they’re single base pair coordinates

· base pairs don’t overlap!

· neighbouring SNPs will have adjacent
indeces

· (i, i+1)

· runs of neighbouring SNPs with a given
value will form a span

· -1 SNPs
· {1,5,6,7,8,9,20,25,28}
· 1,5-9,20,25,28

· runs are identified by using the spans
functions and testing the size of the span

associate an index with each SNP,
in order of appearance
my $idx=0;
for my $snp (sort {$a->{pos} $b->{pos}} @snp) {
$snp->{idx} = $idx++;

}

let’s make a idx-to-snp lookup table

my %idxtosnp;
map { $idxtosnp{$_->{idx}} = $_ } @snp;

create three spans which will store index sets,
one for each value of SNP

my @values = (-1,0,1);
my %idxspan;

map { $idxspan{$_} = Set::IntSpan->new() };

populate each span with indexes of SNPs
of a given value

for my $snp (@snp) {
$idxspan{$snp->{value}}->insert($snp->{idx});

}

5/5/2005 4.0.2.1.1 - Sets and Spans 14

4.0.2.1 – Sets and Spans

Identifying Runs of SNPs
find runs of snps

for my $value (keys %idxspan) {

index set for a given SNP value (-1, 0, 1)
my $idxspan = $idxspan{$value};

spans within index set (runs)
for my $run ($idxspan->spans) {

test run size, make sure it’s big enough
my $runsize = $run->cardinality;
next unless $runsize > 5;

what are the indexes in this run?
my @runindexes = $run->elements;

recover SNPs in run
my @runsnps = map { $idxtosnp{$_} } @runindexes;

SNP ids in run
my @snpids = map { $_->{id} } @runsnps;

left and right most SNP positions
my $leftpos = min (map { $_->{pos} } @runsnps);
my $rightpos = max (map { $_->{pos} } @runsnps);

}

}

5

7
8
9
10
11
12

14

$idxspan

$run

5/5/2005 4.0.2.1.1 - Sets and Spans 15

4.0.2.1 – Sets and Spans

Set::IntRange

· v5.1, Steffen Beyer

· this module is similar to Set::IntSpan, with additional features
· you specify the maximum extent of your range
· you “fill” elements with Bit_On/Bit_Off or Interval_Fill
· overloaded operators

· $U = $S * $T # intersection
· $S *= $T # in-place intersection
· $U = $S + $T # union

· constructor takes a list, not a string
· Norm instead of cardinality

5/5/2005 4.0.2.1.1 - Sets and Spans 16

4.0.2.1 – Sets and Spans

Multiset – Grab Your Set::Bag

· v1.009, Jarkko Hietaniemi

· implements multiset – a set in which
objects may appear more than once

· supports overloading

· use this when you want to keep track of
multiplicity of elements of a given kind

$bag_1 = Set::Bag->new(sheep=>5,pigs=>3);
$bag_2 = Set::Bag->new(chickens=>2);

add a sheep to bag 1
$bag_1->insert(sheep=>1);

what animals are in bag 1?
@animals = $bag_1->elements;

how many sheep?
$numsheep = $bag_1->grab(“sheep”);

what’s in the bag?
$bag_1->grab # (sheep=>5, pigs=>3);

eat a pig
$bag_1->delete(pig=>1);

combine bags
$bag_1->insert($bag_2);

5/5/2005 4.0.2.1.1 - Sets and Spans 17

4.0.2.1 – Sets and Spans

Window – Set::Window

· useful for implementing sliding windows
· calculate GC content in 20kb sliding (by 5kb) windows

· Set::Window works similarly to Set::IntSpan, but represents a single run of consecutive integers
· create a window using left/right position
· move the window ($w->offset)
· shrink the window ($w->inset(1000))
· intersect windows ($w->intersect(@w))

· largest window contained in $w and @w

· union window ($w->cover(@w))
· smallest window containing $w and @w

· find windows inside a window ($w->series(5000))
· get all unique windows of length 5000 within $w

5/5/2005 4.0.2.1.1 - Sets and Spans 18

4.0.2.1 – Sets and Spans

Want More Data Types?

search.cpan.org

5/5/2005 4.0.2.1.1 - Sets and Spans 19

4.0.2.1 – Sets and Spans

4.0.2.1.1
Sets and Spans

· Set::IntSpan – get to know it

· explore CPAN’s Data and Data Types section

