rkshop

er]l Wo
4.0.2.1 = Sets and Spans

BICINFORMATICS

l)

N

Sets and Spans

te elements

handle coordina

clones

contigs

alignments

easily form intersections and unions of elements

learn about index sets

»
=
<
=3

w

=]
=
<
n

iz

@

w
1

—

N

N

S

<

BICINFORMATICS

fr‘?ﬂa r Perl Workshop

4.0.2.1 = Sets and Spans

Sets, Lists and Spans

A set is a finite or infinite
collection of objects in which
order is of no significance and
multiplicity is usually ignored.

{1,2,5,10}

Common operations are
membership (€), intersection
(M), union (w), or complement

(S). The empty set is &.

A multiset is a set in which
multiplicity is explicitly ignored.

(1,1,2,5,10}

A multiset has the additional
operation of multiplicity. A list is
an ordered set of elements in
which an object may be another
set or multiset.

E GENOME
. SCIENCES

A span of a set, S, is defined as

maxS—minS

A span of elements, E, is a set
of consecutive objects

E(a,b)={x|a<x<b}

A window on the integer line, for
example.

Union of multiple sets is written
as

An intersection of multiple sets is
written as

An index set is a set whose
elements label those of another
set. Here K is the index set of S.

5/5/2005

4.0.2.1.1 - Sets and Spans

r;a_'e' BICINFORMATICS

Perl Workshop

4.0.2.1 = Sets and Spans

CPAN’s offerings

E GENOME
. SCIENCES

- a large number of modules implement various aspects of sets, lists, etc.
- do not write your own implementation — use these excellent resources

we will
focus on
these

and briefly
look at
these

SetArray Bpdip
> SetBag Epdo
Set CheckList apdh
SetCrontab Fpdia
setiCrossFroduct epang
—et:Hash Fpdip
set:Infinite bpdip
> SetntEange Redip
> Set:ntSpan Epdip
set MestedGroups pan
Set Ohject bedo
Set Scalar Mpdip
Set String Bpdip
> SetWindow Rpdop

Arrays as objects, with set methods

Eag (multiset) class

Maintain a list of "to-do” iterms

Expand crontab(S)-style integer lists
Interact with the cartesian product of sets
Hashes as objects, including set methods
Infinite Set Theory module, with Date, Time
et of integers (arbitrary intervals, fast)
et of integers newsrc style '1,5-9.11" etc
Grouped data eq ACL's, city/state/country
et of Objects (smalltalkish: [dentitySet)
et of scalars (ing references)

Strings as sets of characters

Manages an interval on the integer line

search.cpan.org/modlist/Data_and_Data Types/Set

5/5/2005

4.0.2.1.1 - Sets and Spans

rag BICINFORMATICS

PE!I'I \"UOI'kShDP Lo n G E N O M E
4.0.2.1 = Sets and Spans =g CSCE”;NTCRESE

Why You Should Care — Part |

- you work with objects that have spatial coordinates (alignments, clones, contigs, etc)
- manipulate objects — intersection, union, difference
- compute coverage, redundancy, gaps

Si — S
[[— i .
genome, G are clones, alignments, etc
unique
— U S coverage by
— = i=1,2,3 elements
aps in
s =G-Js ™%
. coverage
i=1,2,3 i=1,2,3

5/5/2005 4.0.2.1.1 - Sets and Spans

r;a_'e' BICINFORMATICS

Perl \"UOI'kShDP L Ll L G E N O M E
4.0.2.1 = Sets and Spans : CSCE”;NTCRESE

Why You Should Care — Part II

- you work with indexed objects (array probes), which may have spatial coordinates, and are
interested in consecutive runs that exhibit a certain characteristic (experimental result)
- b consecutive deleted array probes = putative deletion

probeindexset 1 2 3 4 ...
probe coordinate set P, P, P, P,...

9000900009000 0000000008000

run of 5 in index set of run of 6 in index set of
deleted probes amplified probes
- identify runs in index sets D = index set of deleted probes
R(D) = all runs iIn index set
: Identlfy pI’ObeS in runs R(D,N) := all runs in index set of length N or greater
for r in R(D,N)
- extract coordinates of prObeS # coordinate of first probe in run
p = P(r->min)
- map runs to pOSitiOﬂS # coordinate of last probe in run

q = P(r->max)

left position of probe run
p->min

right position of probe run
q->max

5/5/2005 4.0.2.1.1 - Sets and Spans

raﬁ BICINFORMATICS

PE!I'I \"UOI'kShDP | . G E N D M E
4.0.2.1 = Sets and Spans =l CSCE”;NTCRESE

Set::IntSpan

$S

-v1.08, Steven McDougall $T

$S->cardinality # 39

Set: : IntSpan->new(*1,5,10-15,20-50") ;
Set: : IntSpan->new(*2-6,8-16,30-40,45") ;

. . for $ $S-
- manages sets of integers, optimized for sets “Sepanorun list > ¥ 1 5 10-15 20-50
that have long runs of consecutive integers S o S5 o
) SUppOftS infinite forms : $span->cardinality #1 1 6 31
(5
20 $U = $S->union($T)

’ _) $U->run_list # 1-6,8-16,20-50
() $U->cardinality # 46

$V = $S->intersect($T)

- spans operator is extremely useful in extracting VI e SR
runs from unions or intersections Sl = $5_difF(STy

$W->run_list # 1,20-29,41-44,46-50

$W->cardinality # 20

- supports for iterators (first, last, next), 6 = $S-sunion(ST)y_>conplenent

comparisons (equal, equivalent, superset, $X->run_list # (-0,7,17-19,51-)
$X->cardinality # -1
subset)

- very clean API

5/5/2005 4.0.2.1.1 - Sets and Spans

rﬂy BIOINFORMATICS
MY Perl Workshop & GENOME
4.0.2.1 — Sets and Spans - CSCE”;NTCRESE

Set::IntSpan in Action

- | have some clones with end sequence coordinates and want to know
- what parts of the genome to these clones represent?
- given a genomic region, which clones lie entirely within this region? partially within the region?
- are what are the largest “holes” in which no clones with coordinates can be found?

region of interest

I clones in region

/)
clones mapped by BAC
end sequence alignments
[] [
[| | | [I
| . |

regions represented by clones
1 —

regions missed by clones

5/5/2005 4.0.2.1.1 - Sets and Spans

raﬁ BICINFORMATICS

PE!I'I \"UOI'kShDP | . G E N D M E
4.0.2.1 = Sets and Spans =l CSCE”;NTCRESE

Constructing Spans from File Coordinates

- read coordinates from a file
clones.txt
- construct a span for each clone #
. # name chr start end
- save the clone spans in an hash of # RP11-2K22 1 238603586 238769410
arravs # RP11-2K23 1 200117141 200294916
y # RP11-2K24 1 63415083 63586024
- construct a union of spans for each i
chromosome — on ﬂ1e'ﬂy open(F,”clones.txt”);
my %chrspans;
my %clonespans;
- $clonespans{$chr} reference to T
i chomp;
“St Of haSheS my ($clone,$chr,$start,$end) = split;
- each hash stores clone name and
my $clonespan = Set::IntSpan->new(“$start-$end™);
clone span
$chrspans{$chr} ||= Set::IntSpan->new();
. $ChrSpanS{$Chr} stores the Union $chrspans{$chr} = $chrspans{$chr}->union($clonespan);
of all clone spans for a given push(@{$clonespans{schr}},
{clone=>%clone, span=>%clonespan});
chromosome 3

5/5/2005 4.0.2.1.1 - Sets and Spans

rﬁg BICINFORMATICS
i PE!I'I \"UOI'kShDP ; n G E N O M E
4.0.2.1 = Sets and Spans : CSCE”;NTCRESE

for my $chr (keys %chrspans) {
my $chrspan = $chrspans{$chr};

total coverage on this chromosome
$chrspan->cardinality;

for my $chrsubspan ($chrspan->spans) {
contiguous regions of coverage
$chrsubspan->cardinality;
$chrsubspan->run_list;
$chrsubspan->min;
$chrsubspan->max;

$gapspan

$chrsubspan->min }

my $entirechr = Set::IntSpan->new(“1l-$chrlength”);
my $gapspan = $entirechr->diff($chrspan);

$chrsubspan
for my $gapsubspan ($gapspan->spans) {
regions missed by clone coverage
$gapsubspan->cardinality;
$chrsubspan->max y

S |

$gapsubspan

5/5/2005 4.0.2.1.1 - Sets and Spans

r’a_'a' BICINFORMATICS
i Perl \"UOI'kShDP G E N D M E
4.0.2.1 = Sets and Spans CSCE”;NTCRESE

Finding Overlapping Elements

my $regionspan = Set::IntSpan->new(“$mystart-$myend™);
my $regionchr = $mychr;

do we have coverage on this chromosome?

$reg|0n3pan if(exists $chrspans{$regionchr}) {

$clonespan

Il

- do not test for non-empty intersection by
using
- if $a->intersect($h)
- a span is always returned by intersect!
- remember, you get a span object

%

- (therefore evaluates to TRUE) not the size
of the span (which may be 0)
- use

- if $a->intersect($b)->cardinality
- if not $a->intersect($b)->empty

cycle through the clones on this chromosome
for $clonespandata (@{$clonespans{$regionchr}}) {

my ($clone,$clonespan)
= @{$clonespandata}{qw(clone clonespan)};

intersect clone with region
my $intersection =
$clonespan->intersect($regionspan);

1s the intersection non-empty?
next unless $intersection->cardinality;

what fraction of the clone intersects the region?
my $fraction = $intersection->cardinality /
$clonespan->cardinality;

if ($fraction == 1) {
clone falls within region span
} elsift ($fraction >= 0.5) {
most of clone falls within region span
} else {
less than half of clone overlaps with region

}

5/5/2005

4.0.2.1.1 - Sets and Spans

E= K - N O E
4.0.2.1 = Sets and Spans = = SCIENCES

EEEEEEE

Drawing Tilings
- did you ever wonder how tilings are

drawn in genome browsers?
- elements are drawn in layers, as not to

overlap with one another in a given layer / ;;
- use Set::IntSpan // %%%/ ;//

% .78
- set up N spans, one for each layer oz‘ ._
o (G
e'?é?ae\,r\],tthe element in layer n /// / 3

- add the element to the span,
- span(n)->union(element)
- you may want to pad the element to get

— %}/ﬂ”ﬂ/ﬂﬂ!{ﬂhnm // /] —

5/5/2005 4.0.2.1.1 - Sets and Spans

raa' BICINFORMATICS

Per]l Workshop = GENOME
4.0.2.1 = Sets and Spans _ CSCE”;NTCRESE

Index Sets

- sometimes intersect won’t help you because your individual objects don’t intersect (e.g. SNPs —
single base pair positions)

- you are interested in consecutive runs of objects with a given characteristic

2 a0, a0 o L op o SO 0L0L0 00,0 000 0y SO0 0

- suppose | have a collection of positions (e.g. SNPs from array)
- each SNP has some identifier (name) and a value associated with it (-1, 0 or 1), for example.
- let each SNP be represented by a HASH, keyed by id, pos and value.

-assume all SNPs are on the same chromosome
- if not, use a hash to store SNPs for each chromosome

$snp = {id=>ID, pos=>P0S, value=>VALUE}

$snp->{id} # SNP_123
$snp->{pos} # 23523829
$snp->{value} # 1

5/5/2005 4.0.2.1.1 - Sets and Spans

raﬁ BICINFORMATICS

| Perl \"UOI'kShDP | . G E N D M E
4.0.2.1 = Sets and Spans =l CSCE”;NTCRESE
Associate Index with Each SNP
' We can t lr’]terSIeCt J[WO SNP POSlthﬂ?, # associate an index with each SNP,
since they’re single base pair coordinates # ig_grdgr of appearance
. my $idx=0;
- base pairs dOﬂLtOVGHap! for my $snp (sort {$a->{pos} < $b->{pos}} @snp) {
$snp—>{idx} = $idx++;
}
’ neighbouring SNPS Wl” haVG adjaCent # let’s make a idx-to-snp lookup table
|ndeCeS my %idxtosnp;
.(L L+1) map { $idxtosnp{$ ->{idx}} = $_} @snp;

create three spans which will store index sets,
) . . . # one for each value of SNP

- runs of neighbouring SNPs with a given
my @values = (-1,0,1);

value will form a span my %idxspan:
- -1 SNPs map { $idxspan{$ } = Set::IntSpan->new() };
-{1,5,6,7,8,9,20,25,28}) ot . Seh S £ NP
populate each span with indexes o S
- 1,5-9,20,25,28 # of a given value

. L) for my $snp (@snp) {
- runs are identified by using the spans $idxspan{$snp->{value}}->insert($snp->{idx});

functions and testing the size of the span d

5/5/2005 4.0.2.1.1 - Sets and Spans

Per]l Workshop = N
4.0.2.1 = Sets and Spans : SC"%

r;a_'e' BICINFORMATICS

o
-

=0
y -
ACNmM

a
[
m

Identifying Runs of SNPs

find runs of snps
for my $value (keys %idxspan) {

index set for a given SNP value (-1, 0, 1)
$idxspan my $idxspan = $idxspan{$value};

| # spans within index set (runs)
5 i for my $run ($idxspan->spans) {

test run size, make sure it’s big enough
$run my $runsize = $run->cardinality;

u next unless $runsize > 5;
what are the indexes in this run?
my @runindexes = $run->elements;

recover SNPs in run
my @runsnps = map { $idxtosnp{$ _} } @runindexes;

SNP ids in run
my @snpids = map { $ ->{id} } @runsnps;

e N P

left and right most SNP positions
my $leftpos = min (map { $_->{pos} } @runsnps);
my $rightpos = max (map { $_->{pos} } @runsnps);

5/5/2005 4.0.2.1.1 - Sets and Spans

rag BICINFORMATICS
i Perl \"UOI'kShDP = = G E N O M E
4.0.2.1 = Sets and Spans _ CSCE”;NTCRESE

Set::IntRange

-vb.1, Steffen Beyer

- this module is similar to Set::IntSpan, with additional features
- you specify the maximum extent of your range
- you “fill” elements with Bit_On/Bit_Off or Interval_Fill

- overloaded operators

- $U = $S * $T # intersection

- $S *= $T # in-place intersection

- $U =$S + $T# union
- constructor takes a list, not a string
- Norm instead of cardinality

5/5/2005 4.0.2.1.1 - Sets and Spans

BICINFORMATICS

rfa? r Perl Workshop

4.0.2.1 = Sets and Spans

Multiset — Grab Your Set::Bag

-v1.009, Jarkko Hietaniemi

- implements multiset — a set in which
objects may appear more than once

- supports overloading

- use this when you want to keep track of
multiplicity of elements of a given kind

$bag_1
$bag_2

Set: :Bag->new(chickens=>2);

add a sheep to bag 1
$bag 1->insert(sheep=>1);

what animals are in bag 1?
@animals = $bag 1->elements;

how many sheep?
$numsheep = $bag_l->grab(“sheep™);

what’s in the bag?
$bag_1->grab # (sheep=>5, pigs=>3);

eat a pig
$bag 1->delete(pig=>1);

combine bags
$bag_1->insert($bag 2);

Set: :Bag->new(sheep=>5,pigs=>3);

5/5/2005

4.0.2.1.1 - Sets and Spans

raa' BICINFORMATICS

Perl Workshop

IS GENOME
4.0.2.1 = Sets and Spans _ CSCE”;NTCRESE

Window — Set::Window

- useful for implementing sliding windows
- calculate GC content in 20kb sliding (by 5kb) windows

- Set::Window works similarly to Set::IntSpan, but represents a single run of consecutive integers
- create a window using left/right position
- move the window ($w->offset)
- shrink the window ($w->inset(1000))
- intersect windows ($w->intersect(@w))
- largest window contained in $w and @w
- union window ($w->cover(@w))
- smallest window containing $w and @w

- find windows inside a window ($w->series(5000))
- get all unique windows of length 5000 within $w

5/5/2005 4.0.2.1.1 - Sets and Spans

W BICINFORMATICS

M Perl Workshop
4.0.2.1 = Sets and Spans

&
m
=

=0
y -
HNmM

i |
o
1Ly

Want More Data Types?

CP&N

Home - Authors - Becent - News - Mirrors - 0 - Feedback

in [Al ~] _CPAN Search |

Archiving Compression Conversion File Mame Systems Locking Option Farameter Confin Frocessing

Eundles (and SDks) Graphics Ferl6

Commercial Software Interfaces Internationalization Locala Fragmas

Control Flow Ltilities Language Extensions Secunty
DataandDataTwpes Language Interfaces Server Daemon Utilities
Databaselnterfaces tail and Usenet News string Language Text Frocessing

Development Support Miscellaneous User Interfaces

Documentation MNetworking Devices IPC World Wide Web

File Handle InputfOutput Operating Systerm Interfaces

search.cpan.org

5/5/2005 4.0.2.1.1 - Sets and Spans

rkshop

er]l Wo
4.0.2.1 = Sets and Spans

BICINFORMATICS

l)

f
ey

Sets and Spans

get to know

IntSpan —

-+
(b)
w

10N

s Data and Data Types secti

- explore CPAN

wn
c
<
(=X
=}
o
<
[%2]
i
D
n
1
NE
N
o
=
<

