
5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 1

2.1.2.4 – Command-Line Data Analysis and Reporting

2.1.2.4.1

· you don’t need to write scripts to carry out data
mining and analysis – even fairly complex cases

· UNIX provides a ready toolbox of text processing
tools that make this possible

· when data is represented in plain text, command-line
binaries that search, extract, replace text can be
used

· each tool is designed to perform a specific task,
and output of one can be piped to another

Command-Line Data Analysis
and Reporting – Session 1

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 2

2.1.2.4 – Command-Line Data Analysis and Reporting

· leverage strengths of languages and formats

· adopt workflow that incorporates data analysis and mining at all
levels

· simple tools for simple questions
· Q: what is the mean of the third column? = SIMPLE
· Q: what does this data mean? = HARD

· use flat-file output as much as possible
· keep number of fields in each line constant
· separate words within a field by a different delimiter

· e.g. “1 2 apple_banana 5” vs “1 2 apple banana 5”

· translate to a more complex format if you specifically require
· avoid visual formatting for large data sets

Build Separable and Reusable Analysis Components

An inflexible pipeline.
A request for a
different report format
is likely to generate a
lot of work.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 3

2.1.2.4 – Command-Line Data Analysis and Reporting

Make the Command-Line Part of Your Toolbox

· you will need to perform
exploratory analysis on your data

· rapid, throw-away analysis forms
the basis of prototype building

· eliminate one-off scripts by
combining command-line tools
and flexible I/O “prompt tool”
scripts

· apply light weight tools to answer
quick “research” questions

· apply formal process design for
lengthier analysis and production
pipelines

A flexible
pipeline.
Components are
separated and
easily
interchanged.
Pipeline adheres
to UNIX-ey
approach: serial
chaining of
modules with
well defined
input/outputs.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 4

2.1.2.4 – Command-Line Data Analysis and Reporting

Things We’ll Cover

· recipes for creating useful data reports
· maximize utility,
· limit complexity and effort

· ways to manipulate your text reports
· command-line methods
· specialized prompt tools

· statistics
· column management (a la cut)
· line filters (a la grep)
· histogramming (a la uniq)

· analysis idioms with common tools
· /bin, /usr/bin, and bash
· command-line Perl

· rejuvenate/discover your passion for the prompt

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 5

2.1.2.4 – Command-Line Data Analysis and Reporting

What You Will Need

· basic knowledge of UNIX
· file management
· notion of a pipe and redirect

· willingness to explore the GUIless land of the command
line

· you can’t break anything by experimenting…
· … except delete all your files
· don’t experiment with rm

· refresh your basic UNIX knowledge with Erin’s 2.0.0.3
course

Workshop 2.0.0.3. Review the course slides to brush
up on UNIX fundamentals. Erin covers file
management and command line tools like grep and
sort.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 6

2.1.2.4 – Command-Line Data Analysis and Reporting

What You Will Learn

· command-line voodoo
· increase productivity
· ask more questions
· interrogate data in complex ways
· relieve yourself from the dependence of other people’s black-box parsers and scripts for simple tasks
· eliminate need for formal DB layer in pilot/prototype projects

· best practices for generating text reports
· how to make a flat-file report and be proud of it

· how to deal with other people’s BAD and NASTY file formats

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 7

2.1.2.4 – Command-Line Data Analysis and Reporting

Motivational Example

#
MCF7_1-100G11

BES: targetedESPplate5B02TF
Mapping success: 1
Reason for failure: 0

BES with 270 bp of unique sequence is located on chr1 starting at 110998639 (449 bp
starting at 24 in BES at 99.7772828507795% identity)

orientation: Plus
BES: targetedESPplate5B02TR

Mapping success: 1
Reason for failure: 0

BES with 184 bp of unique sequence is located on chr1 starting at 111122200 (427 bp
starting at 3 in BES at 99.0632318501171% identity)

orientation: Minus

PAIRED!!!This clone has apparent length of 123561 bp
. . .
clone: MCF7_1-124I17

BES: targetedESPplate5F05TF of > 672 bp: chr17 @ 59314680 (Minus)
15 BES within +/- 50000, of which 4 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5F05TR of > 405 bp: chr4 @ 129284290 (Plus)

0 BES within +/- 50000, of which 0 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
clone: MCF7_1-124I19

BES: targetedESPplate5G05TF of > 519 bp: chr20 @ 53161812 (Plus)
11 BES within +/- 50000, of which 2 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5G05TR of > 462 bp: chr3 @ 63951454 (Plus)

24 BES within +/- 50000, of which 9 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
. . .
Screwed up clone: MCF7_1-69H4 - targetedESPplate3A10TR : chr9 @ 38944527 etc - multiple HSPs!!!

But $multiple = 1 and $longest = 0
0 666
$q = 1

For man or machine? Decide!
This isn’t meant for human eyes. But it’s
not designed well for automated parsing.
What is the target audience?
Unfortunately, it was me.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 8

2.1.2.4 – Command-Line Data Analysis and Reporting

Motivational Example

#
MCF7_1-100G11

BES: targetedESPplate5B02TF
Mapping success: 1
Reason for failure: 0

BES with 270 bp of unique sequence is located on chr1 starting at 110998639 (449 bp
starting at 24 in BES at 99.7772828507795% identity)

orientation: Plus
BES: targetedESPplate5B02TR

Mapping success: 1
Reason for failure: 0

BES with 184 bp of unique sequence is located on chr1 starting at 111122200 (427 bp
starting at 3 in BES at 99.0632318501171% identity)

orientation: Minus

PAIRED!!!This clone has apparent length of 123561 bp
. . .
clone: MCF7_1-124I17

BES: targetedESPplate5F05TF of > 672 bp: chr17 @ 59314680 (Minus)
15 BES within +/- 50000, of which 4 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5F05TR of > 405 bp: chr4 @ 129284290 (Plus)

0 BES within +/- 50000, of which 0 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
clone: MCF7_1-124I19

BES: targetedESPplate5G05TF of > 519 bp: chr20 @ 53161812 (Plus)
11 BES within +/- 50000, of which 2 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5G05TR of > 462 bp: chr3 @ 63951454 (Plus)

24 BES within +/- 50000, of which 9 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
. . .
Screwed up clone: MCF7_1-69H4 - targetedESPplate3A10TR : chr9 @ 38944527 etc - multiple HSPs!!!

But $multiple = 1 and $longest = 0
0 666
$q = 1

No English please
This report is over 6,000 lines long but
contains phrases designed for legibility.
Nobody will read 6,000 lines!

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 9

2.1.2.4 – Command-Line Data Analysis and Reporting

Motivational Example

#
MCF7_1-100G11

BES: targetedESPplate5B02TF
Mapping success: 1
Reason for failure: 0

BES with 270 bp of unique sequence is located on chr1 starting at 110998639 (449 bp
starting at 24 in BES at 99.7772828507795% identity)

orientation: Plus
BES: targetedESPplate5B02TR

Mapping success: 1
Reason for failure: 0

BES with 184 bp of unique sequence is located on chr1 starting at 111122200 (427 bp
starting at 3 in BES at 99.0632318501171% identity)

orientation: Minus

PAIRED!!!This clone has apparent length of 123561 bp
. . .
clone: MCF7_1-124I17

BES: targetedESPplate5F05TF of > 672 bp: chr17 @ 59314680 (Minus)
15 BES within +/- 50000, of which 4 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5F05TR of > 405 bp: chr4 @ 129284290 (Plus)

0 BES within +/- 50000, of which 0 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
clone: MCF7_1-124I19

BES: targetedESPplate5G05TF of > 519 bp: chr20 @ 53161812 (Plus)
11 BES within +/- 50000, of which 2 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5G05TR of > 462 bp: chr3 @ 63951454 (Plus)

24 BES within +/- 50000, of which 9 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
. . .
Screwed up clone: MCF7_1-69H4 - targetedESPplate3A10TR : chr9 @ 38944527 etc - multiple HSPs!!!

But $multiple = 1 and $longest = 0
0 666
$q = 1

Single-line records please.
Avoid multi-line records. Parsing single-
line records can be done in a stateless
way – I don’t have to remember the last
line. This file requires that I keep track of
at least two levels of context (clone and
BES).

No complex grammar please
Parsing this report is a nightmare. What is
the grammar? I have to write a parser (or
at least describe the grammar) to make
sure that I don’t miss anything.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 10

2.1.2.4 – Command-Line Data Analysis and Reporting

Motivational Example

#
MCF7_1-100G11

BES: targetedESPplate5B02TF
Mapping success: 1
Reason for failure: 0

BES with 270 bp of unique sequence is located on chr1 starting at 110998639 (449 bp
starting at 24 in BES at 99.7772828507795% identity)

orientation: Plus
BES: targetedESPplate5B02TR

Mapping success: 1
Reason for failure: 0

BES with 184 bp of unique sequence is located on chr1 starting at 111122200 (427 bp
starting at 3 in BES at 99.0632318501171% identity)

orientation: Minus

PAIRED!!!This clone has apparent length of 123561 bp
. . .
clone: MCF7_1-124I17

BES: targetedESPplate5F05TF of > 672 bp: chr17 @ 59314680 (Minus)
15 BES within +/- 50000, of which 4 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5F05TR of > 405 bp: chr4 @ 129284290 (Plus)

0 BES within +/- 50000, of which 0 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
clone: MCF7_1-124I19

BES: targetedESPplate5G05TF of > 519 bp: chr20 @ 53161812 (Plus)
11 BES within +/- 50000, of which 2 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5G05TR of > 462 bp: chr3 @ 63951454 (Plus)

24 BES within +/- 50000, of which 9 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
. . .
Screwed up clone: MCF7_1-69H4 - targetedESPplate3A10TR : chr9 @ 38944527 etc - multiple HSPs!!!

But $multiple = 1 and $longest = 0
0 666
$q = 1

Consistent format
This report is trying to communicate too
much information and does so in at least
three different formats.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 11

2.1.2.4 – Command-Line Data Analysis and Reporting

Motivational Example

#
MCF7_1-100G11

BES: targetedESPplate5B02TF
Mapping success: 1
Reason for failure: 0

BES with 270 bp of unique sequence is located on chr1 starting at 110998639 (449 bp
starting at 24 in BES at 99.7772828507795% identity)

orientation: Plus
BES: targetedESPplate5B02TR

Mapping success: 1
Reason for failure: 0

BES with 184 bp of unique sequence is located on chr1 starting at 111122200 (427 bp
starting at 3 in BES at 99.0632318501171% identity)

orientation: Minus

PAIRED!!!This clone has apparent length of 123561 bp
. . .
clone: MCF7_1-124I17

BES: targetedESPplate5F05TF of > 672 bp: chr17 @ 59314680 (Minus)
15 BES within +/- 50000, of which 4 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5F05TR of > 405 bp: chr4 @ 129284290 (Plus)

0 BES within +/- 50000, of which 0 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
clone: MCF7_1-124I19

BES: targetedESPplate5G05TF of > 519 bp: chr20 @ 53161812 (Plus)
11 BES within +/- 50000, of which 2 from translocations, 0 from clones with wrong end orientation, 0

from clones with wrong apparent size
BES: targetedESPplate5G05TR of > 462 bp: chr3 @ 63951454 (Plus)

24 BES within +/- 50000, of which 9 from translocations, 0 from clones with wrong end orientation, 0
from clones with wrong apparent size
. . .
Screwed up clone: MCF7_1-69H4 - targetedESPplate3A10TR : chr9 @ 38944527 etc - multiple HSPs!!!

But $multiple = 1 and $longest = 0
0 666
$q = 1

Controlled vocabulary
Choose meaningful, short text flags instead
of complicated descriptions. I found no less
than 4 different ways in which a clone
name is displayed

MCF7_1-100G11
MCF7_1-25e22
MCF7_37_F_I03
MCF737FI03TF

Are some entries redundant?

Mapping success: 1
Reason for failure: 0

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 12

2.1.2.4 – Command-Line Data Analysis and Reporting

Alternate Format

· had received the data in a simpler format, a lot of effort would be saved

· if you are communicating data to someone, do it in a format that will
allow them to recover your original data structure as quickly as possible

· serialized object using Storable
· CSV file, single-line records
· XML

. . .
M0154O21 10 81747525 10 81873318
M0155D17 - - - -
M0155F02 17 58506078 - -
M0155L05 - - - -
M0155O05 17 60433004 20 56433350
M0156B17 20 46815385 20 46975655
M0156I16 17 60402624 20 56433371
M0156K22 3 63983906 17 59333658
M0156N14 20 55865922 20 55984334
M0157C08 20 55834458 20 56005390
M0157C23 20 56412109 20 56476173
M0157E01 17 59766670 17 59913499
. . .

1 minute

1 hour

collaborator sends
you their data and

sends you to
parsing hell

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 13

2.1.2.4 – Command-Line Data Analysis and Reporting

Lessons Learned?

· break the SHIFT keys on your keyboard
· do we really need capital letters? no!

· if it’s not written in full English, skip capitalization

· do not use capital letters in
· your report files
· your directory or file names

· BASH will autocomplete filenames and commands when you hit TAB, but you need to know the case
· /home/JDoe/Work/projects/SPECIAL/backup_Today/report.TXT – this is very annoying

· make parsing of your files as easy as possible for your collaborators
· single-line records
· same number of fields on each line
· what is your data-to-ink ratio?
· how quickly can you parse your own files?
· comment with standard prefixes (e.g. # or //)

· are your files meant for a human or computer?
· not both!
· send the human a figure or diagram – they’ll like you more :)

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 14

2.1.2.4 – Command-Line Data Analysis and Reporting

Report Formats

target audience
e.g. SQL dump, BLAST
alignments

may be difficult to parse if no parser
exists; may be overwhelming in detail;
sender has no (little) control over format;
low data-to-ink ratio

parser may already exist (e.g. BLAST
output); may be partially human-
readable

flat text file
application format

exampleconspros

simple records, all
audiences

depending on format, some parsing is
required; may lack detail and granularity;
can have high data-to-ink ratio

viewable at the prompt; no technical
knowledge required; accessible by
command-line tools; sender optimizes
content for portability and clarity; easy
to make, read and manipulate;
cut/paste into applications

flat text file
CSV

sophisticated audience,
complex records
e.g. Pubmed citation

(can be) verbose - abysmal data-to-ink
ratio; advanced features may be
incompatible with some parsers; data
payload is encapsulated and generally
difficult to read directly; requires
knowledge of format to manipulate;

grammar is self-describing
(sometimes); many parsers and viewers
exist;

XML, ASN.1

highly targeted audience
e.g. application cache file

requires sender/recipient share same
platform; cannot be examined directly; a
priori knowledge of format required to
access data

communicate complex data structures;
extremely simple easy to reconstitute
data; obviates parsing step; usually high
data-to-ink ratio

serialized data structure

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 15

2.1.2.4 – Command-Line Data Analysis and Reporting

Example Report

· consider UCSC’s genome assembly report (.agp)
· compact
· format is self-explanatory

· gaps in assembly are reported in slightly different format, but this is ok because overall complexity of the file is low

· lines do not have a constant number of fields
· gap lines may have a comment
· this isn’t a big problem in this case because the optional comment is at the end of the line

chr1 1 616 1 F AP006221.1 36116 36731 -
chr1 617 167280 2 F AL627309.15 241 166904 +
chr1 167281 217280 3 N 50000 clone no # Unfinished_sequence
chr1 217281 257582 4 F AP006222.1 1 40302 +
chr1 257583 307582 5 N 50000 clone no
chr1 307583 357582 6 N 50000 clone no # Unfinished_sequence
chr1 357583 511231 7 F AL732372.15 1 153649 +
chr1 511232 561231 8 N 50000 clone no
chr1 561232 672780 9 F AC114498.2 1 111549 +
chr1 672781 852347 10 F AL669831.13 1 179567 +

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 16

2.1.2.4 – Command-Line Data Analysis and Reporting

Basic Command Line Tools

· 10 text processing tools will suffice for most of your
command-line processing

· grep, sort, cut, join, uniq (extremely common)
· wc, head/tail (common)
· fold, split (infrequent)
· cat (goes without saying)

· in addition, two text utilities are used for more complex
tasks but still can be deployed at the command-line

· tr – replace characters
· sed – stream editor
· awk – programming language designed for text processing

· heavy-weights can fit the bill, but don’t their power keep
you from knowing their lighter command line brethren

· command-line perl

grep

sort

cutjoin

cat
uniq

fold

split

head/tail

wc

tr
sed
awk

perl

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 17

2.1.2.4 – Command-Line Data Analysis and Reporting

break down a complex
command to its constituent

elements, which perform
tractable steps

think about the overall command
in terms of simple steps like
search, extract, sort, etc.

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 18

2.1.2.4 – Command-Line Data Analysis and Reporting

Command Line Idioms

· command-line tools are frequently combined to form idioms
· patterns of commands that perform a specific, commonly needed task
· relax – these look more complicated then they are

· the pipe “|” sends the output of one command to another

list sorted by first column
sort file.txt

extract the first column, sorted
sort file.txt | cut –d “ “ –f 1

list of unique values seen in the first column
sort file.txt | cut –d “ “ –f 1 | uniq –c

number of unique values seen in the first column
sort file.txt | cut –d “ “ –f 1 | uniq –c | wc

sort file.txt > tmp.1
cut –d “ “ –f 1 tmp.1 > tmp.2
uniq –c tmp.2

sort file.txt | cut –d “ “ –f 1 | uniq -c

number of unique values seen in
the first column
sort –u –k 1,1 file.txt | wc

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 19

2.1.2.4 – Command-Line Data Analysis and Reporting

Downloading Genomic Data – Substrate for Text Processing

· UCSC’s table browser is ideal for downloading data in plain text format
· let’s download some human genome data for chr1:1-10,000,000

· golden path assembly
· BAC end sequence alignments

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 20

2.1.2.4 – Command-Line Data Analysis and Reporting

Exploring the Files

· use head and wc to examine structure of files
· downloaded hg17_agp.txt and hg17_bes.txt

· hg17_agp.txt is tab-delimited with a header line, 104 lines

» ls
-rw-r--r-- 1 martink users 5535 2005-04-25 13:19 hg17_agp.txt
-rw-r--r-- 1 martink users 38624 2005-04-25 13:19 hg17_bes.txt

» head hg17_agp.txt
#bin chrom chromStart chromEnd ix type frag fragStart fragEnd strand
585 chr1 0 616 1 F AP006221.1 36115 36731 -
73 chr1 616 167280 2 F AL627309.15 240 166904 +
586 chr1 217280257582 4 F AP006222.1 0 40302 +
73 chr1 357582511231 7 F AL732372.15 0 153649 +
73 chr1 561231672780 9 F AC114498.2 0 111549 +
73 chr1 672780852347 10 F AL669831.13 0 179567 +
73 chr1 8523471038212 11 F AL645608.29 2000 187865 +
9 chr1 1038212 1167191 12 F AL390719.47 2000 130979 +
74 chr1 1167191 1277350 13 F AL162741.44 2000 112159 +

» wc -l hg17_agp.txt
104 hg17_agp.txt

head FILE
first 10 lines in a file

head –NUM FILE
first NUM lines in a file

wc –l FILE
the number of lines in a file

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 21

2.1.2.4 – Command-Line Data Analysis and Reporting

Exploring Line Fields

· converting tabs to spaces – use expand
· expand –t NUM will replace each tab with NUM spaces

· show the second line

» expand -t 1 hg17_agp.txt | head
#bin chrom chromStart chromEnd ix type frag fragStart fragEnd strand
585 chr1 0 616 1 F AP006221.1 36115 36731 -
73 chr1 616 167280 2 F AL627309.15 240 166904 +
586 chr1 217280 257582 4 F AP006222.1 0 40302 +
73 chr1 357582 511231 7 F AL732372.15 0 153649 +
73 chr1 561231 672780 9 F AC114498.2 0 111549 +
73 chr1 672780 852347 10 F AL669831.13 0 179567 +
73 chr1 852347 1038212 11 F AL645608.29 2000 187865 +
9 chr1 1038212 1167191 12 F AL390719.47 2000 130979 +
74 chr1 1167191 1277350 13 F AL162741.44 2000 112159 +

expand –t NUM FILE
replace each tab with NUM spaces

tail FILE
last 10 lines

tail –NUM FILE
last NUM lines

head –NUM FILE | tail -1
NUMth line

» expand -t 1 hg17_agp.txt | head -2 | tail -1
585 chr1 0 616 1 F AP006221.1 36115 36731 -

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 22

2.1.2.4 – Command-Line Data Analysis and Reporting

Exploring Line Fields

· it is easier to explore a single line when the each field is reported on a
different line

· replace spaces (or the file’s delimiter) with a newline (\n)

» expand -t 1 hg17_agp.txt | head -1 | tr " " "\n"
#bin
chrom
chromStart
chromEnd
ix
type
frag
fragStart
fragEnd
strand

» expand -t 1 hg17_agp.txt | head -2 | tail -1 | tr " " "\n"
585
chr1
0
616
1
F
AP006221.1
36115
36731
-

tr CHR1 CHR2
replace each instance of character
CHR1 with character CHR2
(transliterate)

» head -2 hg17_agp.txt | tail -1 | tr “\t" "\n"
585
chr1
0
616
1
F
AP006221.1
36115
36731
-

headers

first data
line

last data
line

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 23

2.1.2.4 – Command-Line Data Analysis and Reporting

Exploring Line Fields

· let’s number the fields

· some utilities (e.g. uniq) indent the first
field for clarity

· this may break your parsing, if you’re not
expecting it

· use sed to remove leading spaces

· TAB is the typical output delimiter
· use expand or tr to get rid of newly introduced

tabs

» head -2 hg17_agp.txt | tail -1 | tr “\t" "\n“ | cat –n
1 585
2 chr1
3 0
4 616
5 1
6 F
7 AP006221.1
8 36115
9 36731
10 -

cat –n FILE
prefix each line by the line’s
number

sed ‘s/REGEX/STRING/’
replace first match of REGEX with
STRING

sed ‘s/^ *//’
remove leading spaces

sed ‘s/ *$//’
remove trailing spaces

» head -2 hg17_agp.txt | tail -1 | tr “\t" "\n“ | cat –n
| sed ‘s/^ *//’

1 585
2 chr1
. . .

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 24

2.1.2.4 – Command-Line Data Analysis and Reporting

Exploring Line Fields

· let’s use this recipe for the second file
· glean file’s format

· e.g. clone’s name is in the 5th column

» head -2 hg17_bes.txt | tail -1 | tr "\t" "\n" | cat -n
| sed 's/^ *//' | expand -t 1

1 585
2 chr1
3 5875
4 129658
5 CTD-3214E10
6 1000
7 -
8 all_bacends
9 2
10 5875,129237
11 509,421
12 AQ805270,AQ889555

head -2
first 2 lines

tail -1
last line

tr “\t” “\n”
replace all tabs with new lines

cat –n
prefix lines with their number

sed ‘s/^ *//’
remove leading spaces

expand –t 1
replace tabs by one space

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 25

2.1.2.4 – Command-Line Data Analysis and Reporting

Complex Recipe From a Few Simple Transformations

· basic command-line utilities effect a primitive transformation
· most have SQL equivalents

· think of what you need to do in terms of these “atomic” steps

grep

sort

cutjoin

cat
uniq

fold

split

head/tail

wc

show lines
matching a filter

order by num/ascii

extract specific fields
from a line

combine lines from different
files that share the same field

remove duplicate
entries

WHERE

ORDER BY

SELECTJOIN

SELECT DISTINCT

SELECT COUNT(*)

LIMIT

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 26

2.1.2.4 – Command-Line Data Analysis and Reporting

Fun with tr

· visualize sequences with tr and sed

· reformat a FASTA file to 120 lines to fill the screen

· let’s replace some base pairs with tr and see what happens

tr –d CHR1
delete instances of CHR1

fold –w NUM
split a line into multiple lines every
NUM characters

» head ~/work/fly/fasta/bac/BACR06L13.release4
Contig15 ./D744.fasta.screen.ace.10 from 2974 to 166304
GAATTCGTAACATTTTCTGGGGCGTACTAAAAGTTACTTTCAAAAATATT
ATGCATATATTTATTGTCTTTATGTTCATTAAGATTTACATTCATGGCAT
TTAAATATAATAAATACAGCATTAAGAATTTTTAAAAGTGCTTGCCAATG

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 120 > tmp.1
head -2 tmp.1
GAATTCGTAACATTTTCTGGGGCGTACTAAAAGTTACTTTCAAAAATATTATGCATATATTTATTGTCTTTATGTTCATTAAGATTTACATTCATGGCAT
TTAAATATAATAAATACAGCATTAAGAATTTTTAAAAGTGCTTGCCAATGTGTTCTTAATTAACTCCTAAATCTCTACTATTCACCATGCTCTTAAATTA

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 27

2.1.2.4 – Command-Line Data Analysis and Reporting

Show GC Content as Islands

tr ATGC “ __” tmp.1
_ __ _ _ ______ _ _ _ _ __ _ _ _ _ _ _ _ ___

_ __ _ _ __ ___ _ _ _ _ __ _ _ _ _ __ __ _
_ __ _____ _ _ __ __ _ __ __ __ _ _ _ ___ _ _ ___ __ _ __ _ __ _

_____ ____ ____ __ _ __ _ __ _ _ ____ ___ __ _ _ _ ___ __ _____ __ _ __ __ ________ ____ __
_ ___ ___ __ ___ _ _ __ __ __ _ ______ _ _ _ _ _ _ _ _ _ __ _ __ __ _ _ __
____ _ _____ _____ _ __ _ ___ _ __________ _ __ _ _ _ ___ ____ _ _ _ _ ___
____ ____ _ ____ ___ ____ _ __ ___ __ ___ ____ ____ ___ ___ __ _ _ _ _____ ___ __ _
___ ____ ___ ___ __ __ ____ __ ___ __ _ __ __ __ __ ____ _ _______ __ _ ___ _ _ __
_____ _ _ _ __ _ _____ _ _ _ __ _ __ __ ______ _ ___ ___ ___ ___ _ _
__ ___ _ _ _ ________ __ __ __ _ _ _ ___ _ _ _ _ ___ _ _ _ __ _ __ _
_ _ _ _ _ __ _ __ _ _ _ _ __ _ __ _ _ __ _ _ ___ __ __
__ __ _ _ _ ____ __ __ _ _____ _ _ _ _ _ _ _ _ ____ __ __ _ ___ ___
_ _ __ _ __ ________ __ __ _ _ _____ _ ___ __ ___ __ _ _ _ _ _ _ ___
__ _ ___ __ ______ __ ___ _ _ _ _ __ ____ ________ _ _ _ ____ _ _
_ _ ___ _ __ _______ _ _ _ _ _ ___ _ _____ __ _ _ _ _ _____

_ __ _ _ _ __ ___ _ __ _ _ _ ___ ____ _ ___ _ _ ___ _ _ _
__ _ _ _ _ _ ___ _ ___ ___ __ __ _ _ _ _ _
_ _ _ ____ _ __ _ _ __ __ _ _ __ _ _ _ _ _ _ _

_ _ __ __ __ _ __ __ ___ _ _ __ _ __ _ __ ___ _ ___ _ _ _________ _ _
_ _ _ _ ______ __ ___ _ _ ___ __ __ _ _ _ _ __ _ __ __ _ ____ __ _ __ _
____ __ __ _ __ _ _ __ _ _ __ __ _ ___ ________ _ _ __ __ _ ___
___ _ ___ ____ __ _ _ _ _______ _ _ _ _ _ _ _ _ _ _____ __ __ __

__ _ __ _ _ _ _ _ _ _ _ ___ __ _ __ ___ __ ____ __ __ __ _ _
_ _ __ _ _ ___ _ _ ____ _ _ _ __ _________ __ _ _ ___ _ _ _ ___ ___ _ _

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 28

2.1.2.4 – Command-Line Data Analysis and Reporting

Isolate GC Islands

· let’s report each GC island on its own line
· replace all spaces by newlines
· report only lines that start with an underscore (i.e. are a GC island)

· how many islands are there?

tr " " "\n“ tmp.1 | grep ^_ | head
__
_
_

_
_
_
_
__

grep ^CHR
report lines that start with
character CHR (^ is the start-of-
line anchor)

tr " " "\n“ tmp.1 | grep ^_ | wc –l
37513

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 29

2.1.2.4 – Command-Line Data Analysis and Reporting

Count Islands by Size

· to count identical lines use uniq –c
· lines must be pre-sorted, since uniq –c reports runs of duplicates

tr " " "\n“ tmp.1 | grep ^_ | sort | uniq –c
20577 _
9503 __
4096 ___
1789 ____
821 _____
356 ______
175 _______
102 ________
45 _________
26 __________
12 ___________
3 ____________
4 _____________
2 ______________
1 _______________
1 ________________

uniq –c FILE
report number of adjacent duplicate
lines

sort FILE | uniq –c FILE
report number of duplicate lines in a
file, regardless of their position

EXAMPLE

>cat nums.txt
11112232333

>fold –w 1 nums.txt | uniq –c
4 1
2 2
1 3
1 2
3 3
>fold –w 1 nums.txt | sort | uniq –c
4 1
3 2
4 3

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 30

2.1.2.4 – Command-Line Data Analysis and Reporting

Count Island by Size

· to get the size of each island, we want the length of the line
· awk comes in handy here – replace each line by its length
· -n flag asks sort for numerical sorting

tr " " "\n“ tmp.1 | grep ^_ | awk ‘{print length($0)}’ | sort –n | uniq –c
20577 1
9503 2
4096 3
1789 4
821 5
356 6
175 7
102 8
45 9
26 10
12 11
3 12
4 13
2 14
1 15
1 16

sort -n
sort lines numerically by the
first column

awk `{ print length($0) }`
print the length of each line

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 31

2.1.2.4 – Command-Line Data Analysis and Reporting

sort –n | uniq –c -vs- sort | uniq -c

tr " " "\n“ tmp.1 | grep ^_ | awk ‘{print length($0)}’ |
sort –n | uniq –c
20577 1
9503 2
4096 3
1789 4
821 5
356 6
175 7
102 8
45 9
26 10
12 11
3 12
4 13
2 14
1 15
1 16

tr " " "\n“ tmp.1 | grep ^_ | awk ‘{print length($0)}’ |
sort | uniq –c
20577 1

26 10
12 11
3 12
4 13
2 14
1 15
1 16

9503 2
4096 3
1789 4
821 5
356 6
175 7
102 8
45 9

tr " " "\n“ tmp.1 | grep ^_ | awk ‘{print length($0)}’ |
sort | uniq –c | sort –n +1
20577 1
9503 2
4096 3
1789 4
821 5
356 6
175 7
102 8
45 9
26 10
12 11
3 12
4 13
2 14
1 15
1 16

sort [-n] +NUM
sort lines by the NUM column (0-
indexed)

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 32

2.1.2.4 – Command-Line Data Analysis and Reporting

Counting Frequencies

· what are the most common triplets (e.g. AAA, AAC, AAT, etc) in a
given sequence?

· create triplets – non-overlapping
· sort triplets
· count duplicated triplets
· sort by frequency of occurrence
· report top 5

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 3
GAA
TTC
GTA
ACA
TTT
TCT

tr –d “\n” FILE | fold –w NUM
report all characters in a file, NUM
characters at a time

sort [-n] -r FILE
sort in descending order

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 3 |
sort | uniq –c | head -5

1959 AAA
900 AAC
942 AAG
1489 AAT
961 ACA

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 3 |
sort | uniq –c | sort –nr | head -5

2088 TTT
1959 AAA
1561 ATT
1489 AAT
1341 TAA

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 33

2.1.2.4 – Command-Line Data Analysis and Reporting

Schwartzian Transform – at the command line

· the ST is a Perl idiom used to sort elements of an array based on the result of a function applied to
each element

· start with array [1,2,3]
· create a new array that is a list of arrays containing both

· original elements, and
· argument to sort created by applying some function to the original elements
· [[a,1], [c,2], [b,3]]

· apply sort to the new element; here acb->abc to give [[a,1], [b,3], [c,2]]
· recover elements from original array [1,3,2]

· this idiom can be used at the command line
· prepend each line with result of some function applied to the line
· sort by the result
· recover the line

1 a 1 a 1 1
2 d 2 b 3 3
3 b 3 c 4 4
4 c 4 d 2 2

prepend sort recover

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 34

2.1.2.4 – Command-Line Data Analysis and Reporting

Counting Frequencies – cont’d

· we found the most frequent triplets

· how about 6-mers sorted by the number of Gs in them?
· we want to apply the function “number_of_G(string)” to the second field of each line and sort by the result

· first, let’s get all the 6-mers and their frequencies

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 6 |
sort | uniq -c | head

47 AAAAAA
19 AAAAAC
16 AAAAAG
45 AAAAAT
23 AAAACA
21 AAAACC
8 AAAACG
24 AAAACT
8 AAAAGA
11 AAAAGC

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 35

2.1.2.4 – Command-Line Data Analysis and Reporting

Counting Frequencies – cont’d

· make a new line, with a copy of the 2nd field

· transform the first field into the number of Gs in that field

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 6 |
sort | uniq -c | awk ‘{print $2,$0}’
AAAAAA 47 AAAAAA
AAAAAC 19 AAAAAC
AAAAAG 16 AAAAAG
. . .

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" | fold -w 6 |
sort | uniq -c | awk '{print $2,$0}' |
awk ‘ { gsub(/[^G]/,"",$1) ; print length($1),$2,$3} ' | head
0 47 AAAAAA
0 19 AAAAAC
1 16 AAAAAG
0 45 AAAAAT
0 23 AAAACA
0 21 AAAACC
1 8 AAAACG
0 24 AAAACT
1 8 AAAAGA
1 11 AAAAGC

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 36

2.1.2.4 – Command-Line Data Analysis and Reporting

Counting Frequencies – cont’d

· sort by the first and second fields

grep -v ^Contig ~/work/fly/fasta/bac/BACR06L13.release4 | tr -d "\n" |
fold -w 6 | sort | uniq -c |
awk '{print $2,$0}' |
awk '{gsub(/[^G]/,"",$1);print length($1),$2,$3}' |
sort -nr +0 +1 | head -10
5 8 GGGGTG
5 7 GGGTGG
5 7 GGGGCG
5 6 GGTGGG
5 6 GGGGGT
5 6 GGCGGG
5 6 GCGGGG
5 5 GGGGAG
5 5 GGGAGG
5 4 GTGGGG

sort +NUM1 +NUM2
sort lines in a file first by field
NUM1 then by NUM2

number of Gs

frequency
of 6-mer

1
2
3

RECIPE

1 create a copy of the relevant field(s)
2 apply a function to the field(s)
3 sort by the result of the function

idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 37

2.1.2.4 – Command-Line Data Analysis and Reporting

Listing Cluster Jobs - qstat

· process output of qstat (on oscar) to stay on top of your jobs

>qstat

job-ID prior name user state submit/start at queue master ja-task-ID

2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0001.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0002.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0003.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0004.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0005.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0006.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0007.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0008.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0009.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0010.q SLAVE
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0011.q SLAVE
2240765 0 WBDMwgs3x. rwarren r 04/26/2005 09:34:53 o0011.q MASTER
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 o0012.q SLAVE
2240782 0 WBDMwgs3x. rwarren r 04/26/2005 09:34:53 o0012.q MASTER
. . .

r=running
qw=queued

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 38

2.1.2.4 – Command-Line Data Analysis and Reporting

Listing Cluster Jobs - qstat

qstat | grep ^[0-9] | head -1 | tr -s " " "\n" | cat -n
1 2240714
2 0
3 runBlast.s
4 ahe
5 r
6 04/25/2005
7 20:08:43
8 o0001.q
9 SLAVE

qstat | grep ^[0-9] | tr -s " " | cut -d " " -f 4 | sort | uniq -c
98 ahe
1 martink
22 mbilenky
18 rwarren

· what are the fields in each column?
· take the first dataline and prefix each column field with its index

· user name is in column 4 – apply sort and uniq to it to list jobs per user

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 39

2.1.2.4 – Command-Line Data Analysis and Reporting

Listing Cluster Queue Details – qstat -f

>qstat -f

queuename qtype used/tot. load_avg arch states
--
o0001.q BIP 1/2 0.01 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE
--
o0002.q BIP 1/2 2.00 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE
--
o0003.q BIP 1/2 2.00 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE
--
o0004.q BIP 1/2 0.00 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE
--
o0005.q BIP 1/2 2.00 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE
--
o0006.q BIP 1/2 0.00 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE
--
o0007.q BIP 1/2 0.00 glinux
2240714 0 runBlast.s ahe r 04/25/2005 20:08:43 SLAVE

when parsing output in which
records span multiple lines,
try to identify some unique
feature of each part of the
record that will extract a
given line

queue lines have a “.q” in
them – use grep “\.q” to
extract these

job lines have a “:” in the
time – use grep : to extract
these

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 40

2.1.2.4 – Command-Line Data Analysis and Reporting

Counting free/busy CPUs

· each machine appears on its own line
· M/N, M=used CPU, N=total CPU
· load (e.g. 0.73)

· let’s extract the 3rd field and remove the “/”

qstat -f | grep "\.q"
o0001.q BIP 1/2 0.00 glinux
o0002.q BIP 1/2 2.00 glinux
o0003.q BIP 1/2 2.00 glinux
o0004.q BIP 1/2 0.00 glinux
o0005.q BIP 1/2 2.00 glinux
o0006.q BIP 1/2 0.73 glinux
o0007.q BIP 1/2 0.00 glinux
o0008.q BIP 1/2 2.86 glinux
. . .

qstat -f | grep "\.q" | tr -s " " | cut -d " " -f 3 | tr "/" " "
1 2
1 2
2 2
2 2
. . .

collapse
multiple
adjacent
spaces

extract 3rd

field
replace /
with a
space

qstat -f | grep "\.q" | tr -s " " | cut -d " " -f 3 | tr "/" " " | sort | uniq -c
80 0 2
79 1 2
30 2 2

report frequencies of
unique M/N combinations

used CPUs # CPUs

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 41

2.1.2.4 – Command-Line Data Analysis and Reporting

Start awking!

· we find 139/378 CPUs are used

· sums is part of the Perl prompt tools
· set of scripts that reduce the drudge work of manipulating lines and fields at the prompt
· we’ll see those in a few lectures

qstat -f | grep "\.q" | tr -s " " | cut -d " " -f 3 | tr "/" " " |
sort | uniq -c

80 0 2
79 1 2
30 2 2

qstat -f | grep "\.q" | tr -s " " | cut -d " " -f 3 | tr "/" " " | sort | uniq -c |
awk '{print $1*$2,$1*$3}'
0 160
79 158
60 60

qstat -f | grep "\.q" | tr -s " " | cut -d " " -f 3 | tr "/" " " | sort | uniq -c | awk '{print $1*$2,$1*$3}' |
sums
139 378

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 42

2.1.2.4 – Command-Line Data Analysis and Reporting

Today’s Idioms

head FILE
first 10 lines in a file

tail FILE
last 10 lines in a file

head –NUM FILE
first NUM lines in a file

tail –NUM FILE
last NUM lines in a file

head –NUM FILE | tail -1
NUMth line

wc –l FILE
number of lines in a file

sort FILE
sort lines asciibetically by
first column

sort +COL FILE
sort lines asciibetically by
COL column

sort –n FILE
sort lines numerically in
ascending order

sort –nr FILE
sort lines numerically in
descending order

sort +NUM1 +NUM2
sort lines in a file first by
field COL1 then COL2

grep ^CHR FILE
report lines that start with
character CHR (^ is the start-of-
line anchor)

grep –v ^CHR FILE
lines that don’t start with CHR

sed ‘s/REGEX/STRING/’
replace first match of REGEX with
STRING

sed ‘s/^ *//’
remove leading spaces

uniq –c FILE
report number of adjacent
duplicate lines

cat –n FILE
prefix lines with their number

tr CHR1 CHR2 FILE
replace all instances of CHR1 with
CHR2

tr ABCD 1234 FILE
replace A->1, B->2, C->3, D->4

tr –d CHR1
delete instances of CHR1

fold –w NUM
split a line into multiple lines every
NUM characters

expand –t NUM FILE
replace each tab with NUM spaces

idioms idioms idioms idioms

5/20/2005 2.1.2.4.1 - Command-Line Data Analysis and Reporting - Rediscovering the Prompt 43

2.1.2.4 – Command-Line Data Analysis and Reporting

· read man pages for tools covered today
· “man tr”

· become proficient at the command line is like
learning a very tiny language with very simple
grammar

· see you next time!

2.1.2.4.1

Command-Line Data Analysis
and Reporting – Session 1

