
9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 1

1.1.2.8 – Intermediate Perl

1.1.2.8.8
Intermediate Perl – Session 8

· using the warnings system

· benchmarking code

· profiling code

· speeding up code

· style suggestions

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 2

1.1.2.8 – Intermediate Perl

Debugging

·what is the best way to debug?
· the best way is the way which will discover the most bugs, and all the bad bugs, in
the shortest time

·why are there bugs?
· syntax errors

· caught when the script is run
· print Dumber($a) – you meant Dumper

· sematic errors
· hinted by unexpected behaviour
· pernicious and sometimes not detected
· @a[0] = <FILE> – you meant $a[0]

· requirements changes
· data domain expands beyond what was coded for
· amount of data increases and script runs out of system resources

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 3

1.1.2.8 – Intermediate Perl

How to Code to Prevent Bugs

·code conservatively
· code, run, code, run

·code carefully
· if you’re adventuring into new idioms, make sure you have the syntax right
· do not pack too many piped operators (map/grep/sort) into a single line
· keep in mind that toughest errors to spot may not be in complex parts of your code

· do not take for granted that simple statements are not causing the error
· %x = {a=>1,b=>2,c=>3}

·debug practically
· spend time debugging in proportion to the need to debug
· don’t test everything
· implement invariants

· before a block/function/etc know what must be true for the code to function properly (what
you are assuming)

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 4

1.1.2.8 – Intermediate Perl

strict and Data::Dumper and Carp

· we've already seen these

· use strict pragma to enforce variable declaration
· use vars qw($a %b) allows for global variables $a and %b
· consider using our (compare to my) for global variables in a package (perl 5.6)

· use Data::Dumper to visualize your data structures
· see session 2

· use Carp to override warn and die and produce stack traces
· see session 5

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 5

1.1.2.8 – Intermediate Perl

Preparing Your Script – employ warnings

·diagnostic mode (-w) displays verbose warnings
· tedious warnings may be produced which you do not care about
· develop with –w and remove it in production
· locally scoped ^W=1 to toggle
· use diagnostics for even more details

#!/usr/bin/perl –w

{
local ^W=0; # warnings are off for this block
...

}
warnings are automatically off

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 6

1.1.2.8 – Intermediate Perl

Preparing Your Script – employ warnings

·there are many types of warning messages
· see Programming Perl, ch 33 Diagnostic Messages

·not all messages are as critical as others

#!/home/martink/bin/perl -w

use strict;

my @a;
my $x;
my $x;
print $x;
print @a[0];
warn;

"my" variable $x masks earlier declaration in same scope at myscript line 7.
Scalar value @a[0] better written as $a[0] at myscript line 10.
Use of uninitialized value in print at myscript line 9.
Use of uninitialized value in print at myscript line 10.
Warning: something's wrong at myscript line 12.

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 7

1.1.2.8 – Intermediate Perl

limit and scope your warnings

· because warnings can get spammy, it's useful to turn them off in production

· you may be receiving warnings from external modules

· the warnings pragma controls
· where warnings can/cannot be triggered
· what type of warnings are displayed

#!/usr/bin/perl

all warnings will be used
use warnings;
only warnings related to IO or syntax will be shown
use warnings qw(io syntax);

...

now IO warnings will not be shown – calls to pragma are cumulative!
no warnings qw(io);

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 8

1.1.2.8 – Intermediate Perl

warnings categories
Programming Perl, Figure 31.1

also see
perldoc.perl.org/perllexwarn.html

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 9

1.1.2.8 – Intermediate Perl

limit and scope your warnings

· you can escalate a warning to become a fatal error

· this is useful if you consider some warnings more important and wish to be
forced to deal with them

#!/usr/bin/perl

all warnings will be used
use warnings;
no uninitialized warings please
no warnings qw(uninitialized);
syntax warnings are now fatal
use warnings FATAL => qw(syntax);

...

syntax warnings are gone
no warnings FATAL => qw(syntax)
or, downgrade to nonfatal
use warnings NONFATAL => qw(syntax);

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 10

1.1.2.8 – Intermediate Perl

limit and scope your warnings

· if you are writing modules, you can produce warnings from your modules in a
manner that is respectful of the caller

· the caller can toggle the warnings

###
MyPackage.pm
package MyPackage;
use warnings::register;
sub func {
warnings::warnif("some warning");

}

use strict;
use MyPackage;
use warnings;

MyPackage::func();
some warning at ./myscript
line 10

use strict;
use MyPackage;
use warnings;
no warnings
qw(MyPackage)

MyPackage::func();
no warning produced

use strict;
use MyPackage;
use warnings;
use warnings FATAL=>qw(MyPackage)

MyPackage::func();
now warnings from MyPackage are
fatal

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 11

1.1.2.8 – Intermediate Perl

Benchmarking using Benchmark

·understand how long it takes to run your code using Benchmark
· pass the number of iterations and code references
· Benchmark can also create chart data and count iterations of code in a given time

use Benchmark qw(:all);

my $iterations = 1e7;
my $x = 2;
also try cmpthese()
timethese($iterations,

{ func1=>sub{$x*$x},
func2=>sub{$x**$x} });

Benchmark: timing 10000000 iterations of func1, func2...
func1: 0 wallclock secs (0.79 usr + -0.04 sys = 0.75 CPU) @ 13333333.33/s (n=10000000)
func2: 0 wallclock secs (1.18 usr + 0.00 sys = 1.18 CPU) @ 8474576.27/s (n=10000000)

calling cmpthese() instead of timethese() produces a chart
Rate func2 func1

func2 8695652/s -- -39%
func1 14285714/s 64% --

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 12

1.1.2.8 – Intermediate Perl

Time::HiRes – benchmark yourself

· get current time (hi-resolution) and calculate intervals

use Time::HiRes qw(gettimeofday tv_interval);

my $iterations = 1e7;
my $x = 2;
my $t = [gettimeofday];
multiply a lot with map
map { $x*$x } (1..$iterations);
printf("it took %.2f s to run the code",tv_interval($t));

it took 2.87 s to run the code

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 13

1.1.2.8 – Intermediate Perl

Time::HiRes – benchmark yourself

· set an alarm

use strict;
use Time::HiRes qw(alarm);

my $counter = 0;

define what happens when ALRM signal is received
$SIG{ALRM} = sub { print $counter,"\n" ; exit};
set alarm to go off in 0.1 seconds – at which time ALRM signal is sent
alarm(0.1);

now run code
while(1) {

$counter++;
}

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 14

1.1.2.8 – Intermediate Perl

Profile code with Devel::Dprof

·to find out how much time your code is spending in functions, profile it
· a file tmon.out will be created
· dprofpp tmon.out displays a profile table

#!/usr/bin/perl –d:DProf

use strict;

my $iterations = 1e5;
for my $i (1..$iterations) {

call_square(call_random());
call_root(call_random());

}

sub call_random {
return rand();

}
sub call_square {

return $_[0] ** 2;
}
sub call_root {

return sqrt($_[0]);
}

> dprofpp tmon.out
Total Elapsed Time = -4.07070 Seconds
User+System Time = 0 Seconds

Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
0.00 0.470 0.470 200000 0.0000 0.0000 main::call_random
0.00 0.220 0.220 100000 0.0000 0.0000 main::call_square
0.00 0.150 0.150 100000 0.0000 0.0000 main::call_root
0.00 - -0.000 1 - - strict::bits
0.00 - -0.000 1 - - strict::import
0.00 - -0.000 1 - - main::BEGIN

large number of calls to tiny functions may suffer from
round-off errors in report and yield strange values
#
your code should run for enough time to reduce effect
of system housekeeping and code overhead (e.g. importing
modules)

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 15

1.1.2.8 – Intermediate Perl

speeding up code with Memoize

· Memoize is an auto-magical caching module
· it registers your functions and sets up a lookup table
· when your function is called, it stores the output for a given set of arguments
· if same arguments are seen again, function is bypassed and lookup value is returned

use strict;
use Memoize;

memoize("complex_function");

function is called
complex_function(1)
memoized cache is used
complex_function(1);

sub complex_function {
my $arg = shift;

}

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 16

1.1.2.8 – Intermediate Perl

Don't use single-character variables, except as iterator variables.

Don't use two-character variables just to spite us over the above rule.

Constants are in all caps; these are variables whose value will never change during the course of the program.

$Minimum = 10; # wrong
$MAXIMUM = 50; # right

Other variables are lowercase, with underscores separating the words. They words used should, in general, form
a noun (usually singular), unless the variable is a flag used to denote some action that should be taken, in
which case they should be verbs (or gerunds, as appropriate) describing that action.

$thisVar = 'foo'; # wrong
$this_var = 'foo'; # right
$work_hard = 1; # right, verb, boolean flag
$running_fast = 0; # right, gerund, boolean flag

Arrays and hashes should be plural nouns, whether as regular arrays and hashes or array and hash references. Do
not name references with ref or the data type in the name.

@stories = (1, 2, 3); # right
$comment_ref = [4, 5, 6]; # wrong
$comments = [4, 5, 6]; # right
$comment = $comments->[0]; # right

Make the name descriptive. Don't use variables like $sc when you could call it $story_count.

www.slashcode.com/docs/slashstyle.html

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 17

1.1.2.8 – Intermediate Perl

other style resources

· man perlstyle

· www.extremeperl.org/bk/coding-style

· http://perltidy.sourceforge.net/tutorial.html

· Perl Best Practices by Damian Conway (O'Reilly)

9/30/2008 1.1.2.8.8 - Intermediate Perl - debugging, benchmarking and best practices 18

1.1.2.8 – Intermediate Perl

1.1.2.8.8
Introduction to Perl – Session 8

· use the warning system

· benchmark with Benchmark or Time::HiRes

· profile with –d:DProf and speed up with Memoize

· keep style clean and consistent

