
8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 1

1.1.2.8 – Intermediate Perl

1.1.2.8.5
Intermediate Perl – Session 5

· substitution operator

· notes on split

· trapping errors

· I/O

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 2

1.1.2.8 – Intermediate Perl

Substitution Operator s/ / /

· the substitution operator is used to replace text
· s/REGEX/replacement/

· select locations in the string to replace using the REGEX
· behaviour of s/ / / can be modified using /g, /m, /s, /i like for regex
· delimiters can be defined separately for the two parts

· s{ }[]
· s, ,{ }
· as long as the delimiters are balanced

$x = “aabbbb”;

$x =~ s/a/c/; cabbbb
$x =~ s/a/c/; ccbbbb
$x =~ s/b+/d/; ccd
$x =~ s/c+/d/; dd
$x =~ s/d+/sheep/; sheep

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 3

1.1.2.8 – Intermediate Perl

Global Substitution

· replacement of every instance of REGEX is achieved using /g
· s/REGEX/replacement/g

· recall the difference between \1 and $1
· \1 is the current value of the 1st capture bracket during a match
· $1 is the text captured by the 1st capture bracket after a successful match

replace every a with c
$x = “aabbbbaa”;
$x =~ s/a/c/g; ccbbbbcc

remove all digits (replace with nothing)
$y = “123abc456def”;
$x =~ s/\d//g; abcdef

substitute all n-tuples with 1-tuple
$z = “aaabccdefffff 123333”

$z =~ s/(.)\1*/$1/g; abcdef 123

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 4

1.1.2.8 – Intermediate Perl

Evaluated Substitutions with /e

· the second part of the substitution is not a regex, it is a replacement string
· you can use references to captured text using $1, $2, $3… (not \1 \2 \3)
· ask Perl to evaluate the replacement string by using /e

· length($1) below is evaluated and the result is used for when replacement is done

· make sure you know what is being captured by your nested brackets!

· time gives seconds since epoch

replace every a with c

$x = “aaaabbbccd”;
$x =~ s/((.)\2+)/length($1)/eg; 432d

$x = “meet you at _time_”;

$x =~ s/_time_/time/eg; meet you at 1078434770

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 5

1.1.2.8 – Intermediate Perl

Iterated Evaluations with /ee /eee /eeee

· don’t do it unless it’s stupendously clear what is happening

· sprintf is frequently used with /e to reformat the input string

· let's break it down one /e at a time

$x = “i'd like function sqrt applied to 2 please”;
$x =~ s/function (\w+) applied to (.+?) please/sprintf(“%s(%s)”,$1,$2)/ee;

sprintf(“%s(%s)”,”sqrt”,2)
/e sqrt(2)
/e 1.41…

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 6

1.1.2.8 – Intermediate Perl

Return Value of s///

· recall that m// returned meaningful things when called in scalar or list context

· s/// behaves very simply
· returns number of substitutions in any context

$x = “aabbbbaa”;

$num = $x =~ s/a/c/g; ccbbbbcc num=4
@num = $x =~ s/c+/d/g; dbbbbd num=(2)

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 7

1.1.2.8 – Intermediate Perl

Substitution with Lookarounds – inserting text

· recall that m// may match text but can also be used to position the regex engine
at a particular position

· if s/REGEX/replacement/ contains a REGEX which does not match any text but
only positions the cursor, replacement will be inserted at that position

· think of it as replacement of the matching empty string at a position

xxxabcxxx xxxabcxxx
^ ^

cursor positioned
after matching text

cursor positioned at a location
satisfying the lookaround (abc
is in front of cursor)

m/abc/ m/(?=abc)/

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 8

1.1.2.8 – Intermediate Perl

· here I’m using a lookahead (?=) and lookbehind (?<=) to position the cursor
after/before specific strings and inserting “x” at this location

Substitution with Lookarounds – inserting text

$x = “aabbbbaa”;
each s/// is demonstrated on the original value of $x

$x =~ s/(?=bbbb)/x/; aaxbbbbaa
$x =~ s/(?=bbb)/x/; aaxbbbbaa
$x =~ s/(?=bbb)/x/g; aaxbxbbbaa
$x =~ s/(?=bb)/x/g; aaxbxbxbbaa
$x =~ s/(?=b)/x/g; aaxbxbxbxbaa
$x =~ s/(?<=bbbb)/x/; aabbbbxaa

$y = “aabbaacc11cc22”;

$y =~ s/(?<=aa)(?=cc)/x/; aabbaaxcc11cc22

inserting a thousands separator
$x = “1234567”;
$x =~ s/(?<=\d)(?=(\d{3})+$)/,/g; # 1,234,567

- cursor position at least one digit
behind cursor and 3n digits
in front of cursor
- why is the $ anchor needed?

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 9

1.1.2.8 – Intermediate Perl

Regex Bonus (??{CODE})

· the dynamic regex construct (??{CODE}) is available in perl 5.6
· when (??{CODE}) construct is reached, the CODE is evaluated/executed and the result is

inserted into the regular expression

· how do I match a number followed by exactly this many Xs?
· e.g. 3XXX, 5XXXXX, 10XXXXXXXXXX

· how do I match a number followed by its square? e.g. 24 39 416 525

regex /(\d)(??{ “X{$1}” })/

steps /(3)(?{ “X{3}” })/
/(3)X{3}/

regex /(\d)(??{ $1**2 })/

39 /(3)(?{ 3**2 })/
/(3)9/

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 10

1.1.2.8 – Intermediate Perl

splitting Up Isn’t Hard to Do

· split splits strings along a character or regex match boundary
· unlike m/REGEX/g, split returns the text between matches

$x = “sheep:are:fun”;

split along a string
@x = split(“:”,$x) # (sheep,are,fun)

split along a regex
@x = split(/\w:\w/,$x) # (shee,r,un)

split along characters
@x = split(“”,$x) # (s,h,e,e,p,a,r,e,f,u,n)
@x = split(//,$x) # (s,h,e,e,p,a,r,e,f,u,n)

split along all space characters (special meaning of “ “ here)
$y = “ sheep are fun “;
@x = split(“ “,$y) # (sheep,are,fun)

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 11

1.1.2.8 – Intermediate Perl

split’s Context

· split is always always used in a list context, since it returns a list

· split acts on $_ if no target string is supplied

$x = “1,20,300,15,500”;

for my $num (split(“,”,$x)) {
...

}

@x = (“1,2,3” , “4,5,6”)

for (@x) {
for $num (split(“,”)) {

...
}

}

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 12

1.1.2.8 – Intermediate Perl

Limit split Chunks

· split can take a third argument – the number of chunks to return

$x = “1,20,300,15,500”;

split(“,”,$x,3) # 1 20 300

split(“,”,$x,999) # returns all chunks if <999 chunks in string

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 13

1.1.2.8 – Intermediate Perl

split Will Return Empty Chunks

· neighbouring chunk boundaries will result in the return of empty fields

· however, trailing neighbouring chunk boundaries do not result in empty fields
· … unless chunk limit operand is used (use large number like 999 or better still -1)

· leading neighbouring boundaries will cause empty fields

$x = “1,20,300,,15,500”;

split(“,”,$x) # 1 20 300 “” 15 500

$x = “1,20,300,15,500,,”;

split(“,”,$x) # 1 20 300 15 500
split(“,”,$x,999) # 1 20 300 15 500 “” “”

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 14

1.1.2.8 – Intermediate Perl

split with Capturing Parentheses

· capturing parentheses change split’s behaviour
· items captured by the parentheses are included in the output

$x = “aaa1bbb2ccc”;

split(/\d/,$x) # aaa bbb ccc
split(/(\d)/,$x) # aaa 1 bbb 2 ccc

$y = “aaa123bbb456ccc”;

split(/(\d)\d(\d)/,$x) # aaa 1 3 bbb 4 6 ccc

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 15

1.1.2.8 – Intermediate Perl

basic error trapping

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 16

1.1.2.8 – Intermediate Perl

die and warn

· to produce a warning message, use warn
· script continues to run
· message sent to STDERR, with line number if argument does not have trailing "\n"

· to exit fatally, use die
· script stops
· message sent to STDERR, with line number if argument does not have trailing "\n"

for my $i (0..10) {
warn "careful – counter is zero" if ! $i;

}
zero at ./tests line 8.

for my $i (0..10) {
die "can't – counter is zero" if ! $i;

}
zero at ./tests line 8.

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 17

1.1.2.8 – Intermediate Perl

eval

· to catch a fatal error in code, and recover, use eval { };
· if an error is encountered, $@ is set with error string

for my $i (0..1) {
print 1/($i-1);

}
-1
Illegal division by zero at ./tests line 8.

eval {
for my $i (0..1) {
print 1/($i-1);

}
};
if($@) {
catch and fix
print "error caught – message from eval is $@";

}
-1
error caught - message from eval is Illegal division by zero at ./tests line 9.

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 18

1.1.2.8 – Intermediate Perl

eval + die

· if die is called and $@ is set, you get a propagated message

· you can trap die

eval {
for my $i (0..1) {
print 1/($i-1);

}
};
die if $@;
-1
Illegal division by zero at ./tests line 9.

...propagated at ./tests line 12.

eval {
die "I want to exit";

};
die if $@;

I want to exit at ./tests line 8.
...propagated at ./tests line 10.

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 19

1.1.2.8 – Intermediate Perl

Carp

· the Carp module extends functionality of die and warn
· adds additional stacktrace output

· carp is like warn but gives trace

f();
print "next";

sub f {
g();
}

sub g {
carp "hi from carp";
}

hi from carp at ./tests line 16
main::g() called at ./tests line 12
main::f() called at ./tests line 8

next

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 20

1.1.2.8 – Intermediate Perl

Carp

· croak is like die, but gives trace

f();
print "next";

sub f {
g();
}

sub g {
croak "hi from croak";
}

hi from croak at ./tests line 16
main::g() called at ./tests line 12
main::f() called at ./tests line 8

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 21

1.1.2.8 – Intermediate Perl

Carp

· the shortmess() function returns the trace that would have been produced by
carp and croak

f();
print "next";

sub f {
g();
}

sub g {
my $msg = Carp::shortmess("just a message");
print $msg;
}

just a message at ./tests line 16
main::g() called at ./tests line 12
main::f() called at ./tests line 8

next

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 22

1.1.2.8 – Intermediate Perl

trap croak

· you can trap croak, just like you can trap die

eval {
f();

};
die "died with $@" if $@;

sub f {
g();
}

sub g {
croak "croaked";
}

died with [croak at ./tests line 18
main::g() called at ./tests line 14
main::f() called at ./tests line 9
eval {...} called at ./tests line 8

] at ./tests line 11.

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 23

1.1.2.8 – Intermediate Perl

I/O

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 24

1.1.2.8 – Intermediate Perl

Writing to Files

· specify the mode in which the file will be opened using
· “>filename” for writing
· “>>filename” for appending
· “<filename” for reading (default)

my $infile = “~/data.txt”;
my $outfile = “~/lengths.txt”;

open(IN,$infile) || die “cannot open file [$infile]”
open(OUT,”>$outfile”) || die “cannot write to file [$outfile]”;
while(<FILE>) {
chomp;
print OUT $.,length,”\n”; # print line number and length to handle OUT

}
close(IN);
close(OUT)

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 25

1.1.2.8 – Intermediate Perl

File Tests

· test whether you can read from a file, write to a file before doing anything

my $infile = “~/data.txt”;
my $outfile = “~/lengths.txt”;

die “file does not exist [$infile]” unless –e $infile
die “file is not a text file [$infile]” unless –T $infile
die “cannot read from file [$infile]” unless –r $infile
die “cannot write to file [$outfile]” unless –w $infile

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 26

1.1.2.8 – Intermediate Perl

Common File Tests

· testing a file requires IO operation which may be slow if disk is slow
· test the same file using _
· if –e filename && -r _

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-o File is owned by effective uid.

-e File exists.
-z File has zero size.
-s File has nonzero size (returns size).

-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.

-T File is a text file.
-B File is a binary file (opposite of -T).

-M Age of file in days when script started.
-A Same for access time.
-C Same for inode change time.

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 27

1.1.2.8 – Intermediate Perl

IO::File

· IO::File abstracts I/O
· a benefit is that you get a scalar file handle

· to read about handle's methods, see IO::Handle

use IO::File;

my $fh = IO::File->new(“data.txt”);
you can now pass $fh to subroutines, just like any scalar
while(my $line = $fh->getline) {
$fh->getline is more readable and always returns one line, regardless of context
print $line;

}
$fh->close();

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 28

1.1.2.8 – Intermediate Perl

Creating Temporary Files and Directories

· to make temporary files, use tempfile
· file will be created in system temporary directory (tmpdir() from File::Spec)

· $fh = tempfile()
· scalar context, file automatically deleted, you don’t know its name (anonymous)

· ($fh,$filename) = tempfile()
· list context, file not automatically deleted

· (undef,$filename) = tempfile()
· file not created, you get a random filename though

use File::Temp qw(tempfile);

create a temporary file
my ($fh,$filename) = tempfile # GLOB(0x81912d0) /tmp/M8idOGppBX
create a file with a template name in a particular directory
my ($fh,$filename) = tempfile(“sheepfileXXXX”,DIR=>”/home/martink/tmp”);
delete the file after script is done
my ($fh,$filename) = tempfile(“sheepfileXXXX”,DIR=>”/home/martink/tmp”, unlink=>1);

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 29

1.1.2.8 – Intermediate Perl

Creating Temporary Files and Directories

· to make temporary directories use tempdir

use File::Temp qw(tempdir);

create a temporary directory within DIR
my $dir = tempdir(DIR=>“/home/martink/tmp”); #/home/martink/tmp/WJ6gBPOiJv

specify a particular directory name template – trailing X’s randomized
my $dir = tempdir(“sheepXXXX”, DIR=>“/home/martink/tmp”); # /home/martink/tmp/sheep5AC

delete directory (and any files in it) after end of script
my $dir = tempdir(“sheepXXXX”, DIR=>“/home/martink/tmp”, CLEANUP=>1);

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 30

1.1.2.8 – Intermediate Perl

STDOUT and STDERR

· standard output (STDOUT) is buffered, and standard error (STDERR) is not buffered
· lines sent to these two outputs may appear out of order

· STDOUT and STDERR can be redirected independently

· typically, STDERR is for error messages or debugging and STDOUT for output

>cat simple.pl
#!/usr/local/bin/perl
print “message\n”;
print STDERR “error\n”;

% simple.pl > stdout.txt 2> stderr.txt

% simple.pl > stdout.txt 2> /dev/null

% simple.pl &> both.txt

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 31

1.1.2.8 – Intermediate Perl

Changing Default Filehandles

· when you print in perl, the output goes to STDOUT by default
· unless redirected, STDOUT is the terminal

· to redirect print statements to another handle (e.g., that of a file) use select
· select always returns the current handle
· if supplied with a handle, it sets it as the current default output handle

print “hello”; # STDOUT default

my $old = select($fh);

print “hello”; # to handle $fh

select($old);

print “hello”; # back to STDOUT

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 32

1.1.2.8 – Intermediate Perl

Reading from Processes

· open a pipe to a process to read the output of another program
· add a trailing pipe to the filename

save STDOUT to OLDOUT
open(PROC,”/usr/local/bin/analyzethis |”);
while(<PROC>) {
print “process says $_”;

}

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 33

1.1.2.8 – Intermediate Perl

Reading Directories

· to open a directory use opendir then use readdir to get directory listing
· $item will be a file name relative to $dir

· consider using IO::Dir

· to create directories, use File:Path module (mkpath and rmpath)
· will create directory tree, as needed

my $dir = “/home/martink”;
die “[$dir] not a directory” unless –d $dir;
opendir(DIR,$dir);
while(my $item = readdir(DIR)) {
next if $item eq “.” || $item eq “..”; # you get . and .. too!
print “$item”;
print “hark! a directory $item\n” if –d “$dir/$item”;

}

8/19/2008 1.1.2.8.5 - Intermediate Perl - s/, error trapping and I/O 34

1.1.2.8 – Intermediate Perl

1.1.2.8.5
Introduction to Perl – Session 5

· substitution operator s///

· die, warn and Carp

· I/O
· IO::File
· STDERR/STDOUT
· file tests, -r –e -s

