
7/22/2008 1.1.2.8.1 - Intermediate Perl - References 1

1.1.2.8 – Intermediate Perl

1.1.2.8.1
Intermediate Perl
Session 1

· references
· complex data structres

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 2

1.1.2.8 – Intermediate Perl

· references are scalars which point to variables
· they hold the variable’s memory location
· value of the variable can be obtained by dereferencing

· size of scalar variable is always the same size, regardless of type of variable
· easy to pass around a reference, instead of large variable

References

a horse
referent

horse this way
reference

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 3

1.1.2.8 – Intermediate Perl

References Point to Memory Addresses

· perl’s basic variable types are $scalars, @arrays, and %hashes

· each variable may occupy different amounts of memory

· each variable can have a reference

$a = 10

@b = (1,2,3)

%c = (one=>1,two=>2)

$a

@b

%c

$a_ref = \$a

$b_ref = \@b

$c_ref = \%c

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 4

1.1.2.8 – Intermediate Perl

Creating References

%$h_ref@$a_ref$$x_refdereference

$h_ref = \%h$a_ref = \@a$x_ref = \$xreference

hash
%h

array
@a

scalar
$x

· to create a reference add \ at the front of the variable

· to dereference, add the appropriate variable prefix to the reference
· e.g. add @ if dereferencing an array reference

· we'll leave scalar references for now, since they're least used

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 5

1.1.2.8 – Intermediate Perl

Rule #1

· let $v_ref be a reference to variable
· you can replace variable by {$v_ref} in any code

@a = (1,2,3);
$a_ref = \@a;

%h = (one=>1,two=>2);
$h_ref = \%h;

print @a
print @{$a_ref}

print %h
print %{$h_ref}

· @{$v_ref} → @$v_ref
· %{$v_ref} → %$v_ref

reference

dereference

drop { } and take
advantage of
precedence

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 6

1.1.2.8 – Intermediate Perl

References as Strings and Ref()

my $x = 10;
my @a = (1,2,3);
my %h = (one=>1,two=>2);

my $x_ref = \$x;
my $a_ref = \@a;
my $h_ref = \%h;

print $x; 10
print $x_ref; SCALAR(0x80cb34c)
print @a; 123
print $a_ref; ARRAY(0x80cb358)
print %h; two2one1
print $h_ref; HASH(0x80cf3d4)

· If you try to print a reference variable, you get a text string
· the string is useless, except for debugging
· it indicates the referent type
· it indicates the memory address

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 7

1.1.2.8 – Intermediate Perl

Identifying References with Ref()

· the function ref() is used to identify references
· ref($var) returns undef if $var is not a reference
· ref($var) returns the string "SCALAR", "ARRAY", or "HASH"

print ref($x);
print ref($x_ref); SCALAR
print ref($a_ref); ARRAY
print ref($h_ref); HASH

if (ref($mystery_variable) eq "ARRAY") {
print @$mystery_variable;

} else {
print "not an array reference";

}

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 8

1.1.2.8 – Intermediate Perl

Anonymous References – Part 1

· previously, we needed a pre-existing variable to create a reference.

· suppose I want a reference to the list (1,2,3)

· once the reference is created, @a is no longer needed
· (1,2,3) can be accessed by @$a_ref

· an anonymous reference obviates the need for a named variable

@a = (1,2,3)
$a_ref = \@a;

$a_ref = [1,2,3];

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 9

1.1.2.8 – Intermediate Perl

Anonymous References – Part 2

· anonymous references are going to initially annoy you because they add yet
another set of bracket rules
· train your eyes
· keep patient
· collect rewards

$h_ref = {one=>1,two=>2}$a_ref = [1,2,3]anonymous reference

$h_ref = \%h$a_ref = \@a
reference

created from variable

hash
%h = (one=>1,two=>2)

array
@a = (1,2,3)

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 10

1.1.2.8 – Intermediate Perl

Anonymous References – Part 3

· to recover the variable refered by an anonymous reference – dereference!
· remember, there is no associated named variable

@a = (1,2,3);
$ar1 = \@a; reference points to named variable
$ar2 = [1,2,3]; anonymous reference does not point to any named variable

%h = (one=>1,two=>2)
$hr1 = \%h
$hr2 = {one=>1,two=>2};

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 11

1.1.2.8 – Intermediate Perl

Perl Tattoo

() [] {}
list or hash

@ % \@ \%

anonymous
list reference

anonymous
hash reference

list list
reference

hash
reference

hash
@a=(1,2,3) %h=(one=>1,two=>2)

$ar = \@a $hr = \@h

$ar = [1,2,3] $hr = {one=>1,two=>2}

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 12

1.1.2.8 – Intermediate Perl

References for Complex Data Structures

· to create complex data structures (e.g. lists of lists) you need references because
· list elements must be scalars
· hash values must be scalars

· remember that lists collapse
· ((1,2),(3,4)) not a two-element list of lists but a 4-element list of scalars

· a list of lists is created by making a list of references to lists

these are the same
@a = ((1,2),(3,4))
@b = (1,2,3,4)

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 13

1.1.2.8 – Intermediate Perl

Dereferencing – Lists

· to dereference $a_ref

$a_ref = [1,2,3]

${$a_ref}[0] $a_ref->[0]
${$a_ref}[1] $a_ref->[1]
${$a_ref}[2] $a_ref->[2]

“go blind” method “stay sane” method

$a[0]
$a[1]
$a[2]

compare with for array @a

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 14

1.1.2.8 – Intermediate Perl

Dereferencing – Hashes

· to dereference $h_ref

$h_ref = {one=>1,two=>2}

${$h_ref}{one} $h_ref->{one}
${$h_ref}{two} $h_ref->{two}

“go blind” method “stay sane” method

$h{one}
$h{two}
$h{three}

compare with for hash %h

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 15

1.1.2.8 – Intermediate Perl

$h_ref = {one=>1,two=>2}$a_ref = [1,2,3]anonymous reference

$h_ref->{one}
$h_ref->{two}

$a_ref->[0]
$a_ref->[1]
$a_ref->[2]

dereferencing

$h_ref = \%h$a_ref = \@a
reference

created from variable

hash
%h = (one=>1,two=>2)

array
@a = (1,2,3)

Reference table to references

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 16

1.1.2.8 – Intermediate Perl

· consider the following hash, whose values are list references
· $h is a reference to a hash of lists

· $h->{even} is the value of the “even” key which is $even, a list reference

Deeply Nested Structures

$even = [2,3,4];
$odd = [1,3,5];
$h = {even=>$even,odd=>$odd};

$h reference to hash
$h->{even} reference to value of good

$h->{even}->[0] first element in value of even (2)
$h->{even}[0] first element in value of even (2)

$h->{odd}[0] first element in value of odd (1)
$h->{odd}[1] second element in value of odd (3)
$h->{odd}[2] third element in value of odd (5)

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 17

1.1.2.8 – Intermediate Perl

More Deeply Nested Structures

$f1 = { apple => [qw(red tasty)] }
$f2 = { banana => [qw(yellow squishy)] }
$f3 = { papaya => [qw(green gooey)] }

$bag1 = [$f1,$f2];
$bag2 = [$f2,$f3];

$box = [$bag1,$bag2];

$f1->{apple} ARRAY(0x) (reference to anonymous list)
$f1->{apple}[0] red

$bag1->[0] HASH(0x) (reference to $f1)
$bag1->[0]{apple} ARRAY(0x) (reference to anonymous list)
$bag1->[0]{apple}[1] tasty

$box->[1][1]{papaya}[0] green

${${${${$box}[1]}[1]}{papaya}}[0] I’m blind

box

bag1 bag1

f1

f2

f2

f3

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 18

1.1.2.8 – Intermediate Perl

More Deeply Nested Structures

$f1 = { apple => [qw(red tasty)] }
$f2 = { banana => [qw(yellow squishy)] }
$f3 = { papaya => [qw(green gooey)] }

$bag1 = [$f1,$f2];
$bag2 = [$f2,$f3];

$box = [$bag1,$bag2];

$box->[1][1]{papaya}[0]

box

bag1 bag1

f1

f2

f2

f3

papaya green

gooey

KEY VALUE

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 19

1.1.2.8 – Intermediate Perl

Iterating through the Box of Bags of Fruits

$f1 = { apple => [qw(red tasty)] };
$f2 = { banana => [qw(yellow squishy)] };
$f3 = { papaya => [qw(green gooey)] };

$bag1 = [$f1,$f2];
$bag2 = [$f2,$f3];

$box = [$bag1,$bag2];

for $bag (@$box) {
each $bag is a list reference
for $fruit (@$bag) {
each $fruit is a hash reference
for $fruit_name (keys %$fruit) {
each $fruit_prop is a list reference
for $fruit_prop (@{$fruit->{$fruit_name}}) {

print “$fruit_name is $fruit_prop”;
}

}
}

}

7/22/2008 1.1.2.8.1 - Intermediate Perl - References 20

1.1.2.8 – Intermediate Perl

1.1.2.8.1
Intermediate Perl
Session 1

· [] is for array lookup
· [] is for anonymous arrays

· {} is for hash key lookup
· {} is for anonymous hashes

