
7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 1

1.0.1.8 – Introduction to Perl

1.0.1.8.8
Introduction to Perl
Session 8

· recipes and idioms
· where to go from here

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 2

1.0.1.8 – Introduction to Perl

Setting a Default Value

· the op= operator is a useful shortcut
· a = a + b → a += b

· a = a * b → a *= b

· a = a || b → a ||= b

· remember the difference between false and defined
· zero is false, but defined

force default value if variable is false
$x ||= 5;

set default values for input arguments
func($x,$y);

sub func {
my $x = shift;
method A – shift or default
my $y = shift || 5;
method B – shift, then default
my $y = shift;
$y || = 5;

}

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 3

1.0.1.8 – Introduction to Perl

defined-or

· Perl 5.10 adds a new type of OR which uses if defined rather than if

· use // when false (0) is an acceptable value

the defined-or # the standard or
$c = $a // $b; $c = $a || $b
equivalent to # equivalent to
if(defined $a) { if($a) {
$c = $a $c = $a;

} else { } else {
$c = $b; $c = $b;

} }

$a=0 is a perfectly good value, which will be honoured
$a ← 10 assignment will happen only when $a is undefined
$a //= 10;

compare the above to ||=, for which 0 is not an acceptable value
here, $a ← 10 assignment will happen when $a is false
$a ||= 10;

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 4

1.0.1.8 – Introduction to Perl

Swapping Values

· to swap values, Perl does not require a temporary variable

initialize separately
$a = 5;
$b = 10;

initialize together
($a,$b) = (5,10);

swap simultaneously
a ← 10 b ← 5
($a,$b) = ($b,$a);

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 5

1.0.1.8 – Introduction to Perl

Processing Strings One Character at a Time

· to split a string into component characters, use split with empty boundary

· you can also use a while loop with global captured search

initialize separately
$string = “wooly sheep”;
split (//,$string) also works
split (undef,$string) also works
@chars = split(“”,$string);

for $char (@chars) {
print qq{give me an $char!};

}

initialize separately
$string = “wooly sheep”;
split (//,$string) also works
while($string =~ /(.)/g) {
print qq{give me an $1!};

}

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 6

1.0.1.8 – Introduction to Perl

Match with Confidence

· test whether a regex matches a string in scalar context
· returns 0/1 if REGEX is found anywhere within the string

· pull out all matches using list context and /g
· you must use /g or you will only get the first match

$found_match = $string =~ /REGEX/;

@matches = $sequence =~ /atgc/g;

extract subpatterns with capture brackets
@matches = $sequence =~ /aaa(...)aaa/g;

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 7

1.0.1.8 – Introduction to Perl

counting characters in a string

· recall that =~ with /g returned all matches

· use =~ tr/// to count

$x = "aaaabbbccd";
@matches = $x =~ /a/g; @matches ← qw(a a a a)

to count the number of matches, force =~ to be evaluated in list context first,
then evaluate in scalar context

$n = () = $x =~ /a/g; $n ← 4

$n = $x =~ /a/g; does not work - =~ is evaluated in scalar context $n ← 1
($n) = $x =~ /a/g does not return count – returns first match $n ← "a"

$x = "aaaabbbccd";
$n = $x =~ tr/a//;

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 8

1.0.1.8 – Introduction to Perl

Reversing Lists

· to reverse a list or string, don’t forget the reverse operator
· in scalar context

· if passed a scalar, reverses the characters in the scalar – e.g, sheep → peehs
· if passed a list, reverses the list and returns a concatenated list – e.g., qw(1 2 3) → "321"

· in list context, reverses a list and returns it – e.g., qw(1 2 3) → qw(3 2 1)

@chars = split(“”,"sheep"); → qw(s h e e p)

scalar context, passed a scalar
$string_rev = reverse “sheep”; → peehs
list context, passed a list
@chars_rev = reverse @chars; → qw(p e e h s)
scalar context, passed a list
$string_rev = reverse @chars; → peehs

challenge
print reverse “sheep”; → sheep
print $y = reverse “sheep”; → peehs

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 9

1.0.1.8 – Introduction to Perl

Parsing Out Substrings

· to extract parts of input strings, use regexs and capture brackets

· the first example works because =~ is called in list context
· returns all matching strings (optionally delineated by capture brackets)

· the second example works because pattern buffers $1,$2 are set after a
successful match

($w,$h) = $message =~ /screen size is (\d+) by (\d+) pixels/;

or verbosely

if($message =~ /screen size is (\d+) by (\d+) pixels/) {
($w,$h) = ($1,$2);

}

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 10

1.0.1.8 – Introduction to Perl

Trimming Strings

·chomp is used to safely remove a newline from the end of a string
· other leading/trailing characters are commonly discarded

· spaces
· zeroes
· non-word characters

remove leading spaces
$x =~ s/^\s*//;
remove trailing spaces
$x =~ s/\s*$//;
remove both leading and trailing spaces
$x =~ s/^\s*(.*?)\s*$/$1/;

challenge – why not the following regex?
$x =~ s/^\s*(.*)\s*$/$1/; why is the ? important?

remove leading zeroes
$x =~ s/^0*//;

remove a variety of leading characters
$x =~ s/^[0\s;]*//;

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 11

1.0.1.8 – Introduction to Perl

Creating Integer Ranges

· use the range operator .. to create ranges of integers, or even characters

@range = (10..20);
@range_rev = reverse (10..20);

for (10..20) {
print;

}

range of characters
for (a..z) {
$alphabet .= $_;

}

$alphabet = join(““,(a..z));

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 12

1.0.1.8 – Introduction to Perl

Using Array Slices

· an array slice is a list of several array elements
· you specify a set, or range, of indeces and obtain a list of corresponding elements
· syntax is a little wonky, but makes sense if you think about it

@list = (0..9);

$list[0] first element
$list[1] second element
($list[0],$list[1]) first, second elements
@list[0,1] first, second elements
@list[0..2] first three elements
@list[0..@list-1] all elements

$list[0] element, scalar context
@list[0] slice, list context – same as ($list[0])

array in original order
@list[0..@list-1]
two ways to reverse an array – reverse elements or indexes!
@newlist = reverse @list;
@newlist = @list[reverse(0..@list-1)];

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 13

1.0.1.8 – Introduction to Perl

Using Modules

· modules are collections of Perl code written by other users that perform specific
tasks

· modules can be downloaded from CPAN – Comprehensive Perl Archive Network
· search.cpan.org

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 14

1.0.1.8 – Introduction to Perl

Math::VecStat

· a simple module is Math::VecStat
· provides statistics about a list: min, max, average, sum, and so on

· import the module by use

· some module require that you specify which functions you wish to import into
your namespace

· CPAN provides documentation about each module
· man Math::VecStat

use Math::VecStat qw(average sum);

both functions have been imported into current namespace
$avg = average(@list);
$sum = sum(@list);

we didn’t import this function, so must call it explicitly
$min = Math::VecStat::min(@list);

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 15

1.0.1.8 – Introduction to Perl

Fetching Current Date

· the main date function is localtime
· list context returns

· $sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst
· month is 0-indexed !!!
· add 1900 to year !!!

· scalar context returns formatted date

$date = localtime;
print $date;

Tue May 30 14:11:56 2006

@list = localtime;
printf(“day %d month %d year %d”,$list[3],$list[4],$list[5]);
day 8 month 6 year 108

printf(“day %d month %d year %d”,(localtime)[3,4,5]);

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 16

1.0.1.8 – Introduction to Perl

Getting Epoch Value

· the UNIX epoch value is seconds since epoch
· turn of epoch is Thu Jan 1 1970 (UTC)

· use timelocal from Time::Local module
· use localtime(EPOCH) to convert back to date values

@list = localtime;
fetch the current day, month and year via array slice
($s,$min,$h,$d,$mm,$y) = @list[0..5];

determine turn of epoch right now
$epoch = timelocal($s,$min,$h,$d,$mm,$y);
1215543818

timelocal is the reverse of localtime – turns S,M,H,D,M,Y into epoch time
$epoch = timelocal((localtime)[0..5]);

epoch midnight tonight
print timelocal(0,0,0, (localtime)[3..5]);
1215500400

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 17

1.0.1.8 – Introduction to Perl

Changing Array Size

· you grow an array by allocating new values

· recall that @list in scalar context gives the size of list (number of elements)
·$#list is the index of the last element

· $#list ← @list-1

@list = ();
$list[99] = 1;
you now have a 100 element array

$list[99] = undef;
you still have a 100 element array – you cannot shrink array by setting
elements to ‘undef’ since ‘undef’ is a perfectly good element value

$#list = 9;
you now have a 10 element array – explicitly set the index of last element

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 18

1.0.1.8 – Introduction to Perl

Be wary of $_

· the current iterator value is $_
·$_ is an alias
· whatever $_ points to, can be altered in place

for (@list) {
read-only access to elements of @list - good
print $_;

}

for (@list) {
you are altering $_ - since $_ is an alias, you are altering @list
$_++;

}

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 19

1.0.1.8 – Introduction to Perl

Adding/Removing Elements from a List

· you cannot have a list of lists, unless you use references
· if you combine two lists, you will get a single, flattened list

· remove elements with shift (from the front) or pop (from the back)

all these are valid ways to extend a list

push @list, $value;
push @list, @otherlist;
@list = (@onelist,@anotherlist);
@list = ($value,@anotherlist);

($x,@list) = ($list[0],@list[1..@list-1])
$x = shift @list

(@list,$x) = (@list[0..@list-2],$list[-1]);
$x = pop @list;

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 20

1.0.1.8 – Introduction to Perl

Randomizing a List

· randomize a list by using a random sort routine

ascending numerical sort
@list = sort { $a <=> $b } @list;

random sort – shuffle
pair-wise comparison independent of actual values – returns -1,0,-1 randomly
@randlist = sort { rand() <=> rand() } @list;

shuffle the list by shuffling indices, not elements
@randlist = @list[sort { rand() <=> rand() } (0..@list-1)];

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 21

1.0.1.8 – Introduction to Perl

Using Hashes Effectively

· use a hash when storing relationships between data
· fruit and color
· base pair and frequency

· this example is artificial – you'll see better ways to do this when see references

e.g., @clones contains a list of clones, e.g, qw(A0001A01, A0001B01, etc)
for (@clones) {
$count{$_}++;

}
use hashes to store pair-wise relationships
for $i (0..@clones-1) {
for $j ($i+1..@clones-1) {
($ci,$cj) = @clones[$i,$j];
if(clones_overlap($ci,$cj)) {
$overlap{$ci} .= $cj; # e.g., $overlap{A0001A01} = "A0012F01A0018G03A0024B03"
$overlap{$cj} .= $ci;

}
}

}
now extract names of all clones that overlap $clonename
@overlap_clones = $overlap{$clonename} =~ /.{8}/g;

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 22

1.0.1.8 – Introduction to Perl

Deleting from a Hash

· the only way to remove a key from a hash is to use delete

$hash{sheep} = “wooly”;

$hash{sheep} = undef;
key sheep still exists, points to ‘undef’ value
if(exists $hash{sheep}) {
yup – key exists and this code runs

}

delete $hash{sheep};
if(exists $hash{sheep}) {
nope – key does not exist and this code does not run

}

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 23

1.0.1.8 – Introduction to Perl

Copy and Substitute in a Single Step

· copying a string and modifying it is a very common pair of steps

· you can do both in one shot
· you must use the brackets, or precedence will kill you

· challenge – what is assigned to $y?

$y = $x; # copy
$y =~ s/sheep/pig/g; # substitute

($y = $x) =~ s/sheep/pig/g;

$x = “aaa”;

$y = $x =~ s/a/b/; # what is $x and $y ?
$y = $x =~ s/a/b/g; # what is $x and $y ?

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 24

1.0.1.8 – Introduction to Perl

Morals

·print evaluates its arguments in list context – watch out!
·undef is a perfectly good value for a list or hash element

· shrink lists by adjusting #$list
· delete keys by using delete
· distinguish between testing for truth (zero not ok) or definition (zero ok)

·$_ is an alias, not a copy of a value
· do not adjust the value of $_ unless you are sure-footed

· character class [abc] matches only one character, not three
·for and foreach are synonymous
·qq{} interpolates but q{} does not
· use (m..n) range operator where possible (m≤n)
· keys/values return elements in no particular (but compatible) order
· replace strings with s/// rather than substr

· s/REGEX/REPLACEMENT/ - the second argument is not a regex

7/8/2008 1.0.1.8.8 - Introduction to Perl - Recipes and Idioms 25

1.0.1.8 – Introduction to Perl

1.0.8.1.8
Introduction to Perl
Session 8

· congratulations!

