e
L S =
(a8 -+ A
o o 0o
el nm. £
v (]
s g, S :
2 o € &
c Q o m C
= C wn ..le. o S
S 2 EFRREE &
- (")) w c m. <
- v — O w =
IS - - - S
B
a
o)

e

Mo LY
_._pa/a“..,a.‘ A

)
SREh
e
W Jn.—/.
LA

rkshop

Wo
1.0.1.8 =Introduction-to Perl

erl

BIOINFORMATICS

l_')

(c]
o
o
)]

~
s
o~

~

O

rr:aa' BIOINFORMATICS

Perl Workshop L& - GENOME
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Recap of substr()

-we’ve seen how substr () can be used to manipulate a string
- extract, insert, replace, remove

-regions affected by substr () are defined by position, not content

get the first 5 characters
substr($string,0,5);

insert “abc” at position 3 (after 3rd character)
substr($string,3,0,”abc”);

replace first 5 characters with “abc”

substr($string,0,5) = “abc”;

replace first 5 characters and retrieve what was replaced
$0ld = substr($string,0,5,”abc”);

remove 5 characters at position 3
substr($string,3,5,””);

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

rr:aa' BIOINFORMATICS

Perl Workshop L& - GENOME
1.0.1.8 = Introduction to Perl : CSCE I E NTC RESE

Recap of =~

-we used the operator =~, which binds a string to a pattern match, to test a string
using a regular expression

if($string =~ /REGEX/) { ... }

-so far, we only tested whether the regex matched

-we will now look at how to extract

-what was matched
- a*b can match b, ab, aab, aaab, ...
- how many times a match was found

-where in the string a match was found

-we will also see how to use the replacement operator s/// to replace parts of a
string which match a regex

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

f@' BIOINFORMATICS

Perl Workshop

T GENOME
1.0.1.8 — Introduction to Perl CSCE I E NTC RESE

Capturing Matches

-capture brackets are used to extract parts of a string that matched a regex

-text captured is available via special variables

$string = “sheep”;

if ($string =~ /e*p/) {
we know it matched, but we don’t know what part of $string matched

}

if ($string =~ /(e*p)/) {
text within capture brackets available in pattern buffer $1
$matched = $1;
print “$matched in $string matched”;

}

eep in sheep matched

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

rr:aa' BIOINFORMATICS

Perl Workshop = N
1.0.1.8 =Introduction-to Perl SC I E
= N

Pattern Buffers

-the pattern buffers $1, $2, $3 store the text matched within first, second, third, ...
set of capture brackets

- $nis an empty string if no text matched

$string = “53 big sheep”;

if ($string =~ /(\d+) \w+ (\w+)/) {
($number, $animal) = ($1,%2);
print “saw $number $animal”;

}

saw 53 sheep

6/24/2008

1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

' BIOINFORMATICS
r@a Perl \VOI’kSth e Ll G E N U M E
1.0.1.8 = Introduction to Perl - CS-CE I E NTC RESE

Pattern Buffers

-buffers are reassigned values on each successful search

$string = “53 big sheep”;

if ($string =~ /(\d+) \w+ (\w+)/) {
$string =~ /(pig)/; # pattern buffers not reset
$string = ~ /(.ig)/; # pattern buffers reset
($number,$animal) = ($1,%2);
print “saw $number $animal”;

}

-be careful when using $n, since values may become reset or go out of scope
- $n defined until end of current code block or next successful search, which ever first

-use special variables @- and @+ to determine number/location of submatches
- @- match start
* @+ match end

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r’ag BIOINFORMATICS

Perl Workshop L& - GENOME
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Bypassing Pattern Buffers

-the match operator can return the matched text directly, depending on the
context
“in scalar context, =~ returns the number of captured matches
“in list context, =~ returns the text of captured matches

-we have already seen the use of =~ in scalar context

$string = “53 big sheep”;

scalar context, no capture brackets - returns 0/1 match success
my $result = $string =~ /\w/; $result — 1

-now we turn to =~ in list context

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

' BIOINFORMATICS
r@a Perl \VOI’kSth e Ll G E N U M E
1.0.1.8 = Introduction to Perl . CSCE I E NTC RESE

Match List Context

=~ will return the patterns that matched within the capture brackets

$string = “53 big sheep”;
my @matches = $string =~ /(\w)(\w) (\w)/;

@matches — qw(5 3 b)

-remember that the pattern buffers $1, $2, $3 will store the contents captured by
the brackets

-several special variables store pattern buffer result
- @+ stores offsets of the end of each pattern match
- @- stores offsets of the start of each pattern match

- $+ stores the last pattern match
- $#- or $#+ stores the number of patterns matched

-$n can be expressed as substr($string, $+[n], $+[n] - $-[n]);

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@' BIOINFORMATICS
A Perl \‘{orkshop e Ll G EN U M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

¢+ and @+ and @-

-three special variables help interrogate the search results

$string = “0123456789”;
my @matches = $string =~ /.([1-3]+)..([6-8]+)/;

$+ stores the last successfully matched subpattern
print $+;
678

@- stores the positions of match starts of subpatterns
$-[0] holds the offset of start of the whole match
print @-;

016

@- stores the positions of match ends of subpatterns
$-[0] holds the offset of end of the whole match
print @+;

10 4 9

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@_’g’ BIOINFORMATICS

Perl Workshop

e GENOME
1.0.1.8 = Introduction to Perl =t CS‘CEIENTCRESE

Global Matching

-so far, we’ve written a regular expression that may match multiple parts of
interest in a string

$clone = “M0123B03”;

if ($clone =~ /(\w)(\d{4a})(\w)(\d{2})/) {
($1ib,$plate,$wellchr,$wellint) = ($1,$2,$3,%4);

}

-we can find all match instances of a regular expression by using global matching
- global matching is toggled using /g flag

-in a list context, a global match will return all matches on a string to a pattern

$string = “53 big sheep”;
@matches = $string =~ /[aeiou]/g;

@matches — quw(i e e)

6/24/2008

1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

rraa' BIOINFORMATICS

Perl Workshop

Pe-rEl: GENOME
1.0.1.8 = Introduction to Perl - CS-CE I E NTC RESE

Example with /g

-extracting all subsequences matching a regex

random 1000-mer
$seq = make_sequence(bp=>"agtc",len=>1000);

all subsequences matching at.gc
@match = $seq =~ /at.gc/g;

print @match;

sub make sequence {

%args = @_;
@bp = split("",%args{bp});
$Seq — ||||;

for (1..$args{len}) {
$seq .= $bp[rand(@bp)];
}

return $seq;

}

atcgc atagc atagc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

f@' BIOINFORMATICS

Perl Workshop

P GENOME
1.0.1.8 — Introduction to Perl : CSCE I E NTC RESE

/g with capture brackets

-capture brackets can be used with /g to narrow down what is returned

-if no capture brackets are used, /g behaves as if they flanked the whole pattern
-/at.gc/g equivalentto /(at.gc)/g

random 1000-mer
$seq = make_sequence(bp=>"agtc",len=>1000);

all subsequences matching at.gc
@match = $seq =~ /at(.)gc/g;

print @match;

Caa

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@' BIOINFORMATICS
A Perl \‘{orkshop | = L G EN O M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

/g with multiple capture brackets

-if you have multiple capture brackets in a /g match, each matched subpattern will
be added to the list

$string = “a1b2c3”;

on each iteration of the match two elements will be pushed onto the list
@match = $string =~ /(.)(.)/g;

print @match;

alb2c3

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

f@' BIOINFORMATICS

Perl Workshop e Ll GENOME
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

/g in scalar context

-in scalar context, the global match returns 0 or 1 based on the success of the next
match in the string

- it keeps track of the previous match
-used in conjunction with while

$seq = make_sequence(bp=>"agtc",len=>1000);

while ($seq =~ /(at.gc)/g) {
$match = $1;
print “matched $match”;

}

matched atcgc
matched attgc
matched attgc
matched atcgc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@' BIOINFORMATICS
A Perl \‘{orkshop e Ll G EN U M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

/g in scalar context

-to determine where the match took place, use pos
-pos $string returns the position after the last match

$seq = make_sequence(bp=>"agtc",len=>1000);

while ($seq =~ /(at.gc)/g) {
$match = $1;
$matchpos = pos $seq;
print "matched $match at ",$matchpos-5,” around “,substr($seq,$matchpos-7,9);

}

matched atcgc at 106 around ccatcgccc
matched atggc at 241 around atatggcga
matched atggc at 271 around agatggctc
matched attgc at 507 around tcattgcgc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

' BIOINFORMATICS
r@a Perl \VOI’kSth e Ll G E N U M E
1.0.1.8 = Introduction to Perl : CSCE I E NTC RESE

Manipulating Search Cursor

-pos($string) returns the current position of the search cursor
-within awhile loop, this is the position at the end of the last successful match

-you can adjust the position of the cursor by changing the value of pos($string)
- pos can act like an |-value (just like substr)

- adjusting cursor position is the only way to return
$seq = make_sequence(bp=>"agtc",len=>10); overlapping search results

- in this example, we return all pairs of adjacent

hil =~ /(..
while (seq = /(..)/e) { bases in the string, not just abutting ones

print "matched $1 at “, pos $seq;
back up the cursor one character

pos($seq)--; -a search finds pair bp[i]bp[i+1] and the

} cursor is at i+2 at the end of the search
attpateatt ~tofind bp[i+1]|bp[i+2] we need to back the
matched at at 2 cursor up to i+1

matched tt at 3
matched tg at 4
matched ga at 5

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

rr:aa' BIOINFORMATICS

Perl Workshop L& - GENOME
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Replacement Operator

-we have seen how substr() can be used to replace subtext at specific position

-what if we want to replace all occurrences of one substring with another?
*we use s/REGEX/REPLACMENT/
- REPLACEMENT is not a regular expression —it is a string

$seq = make_sequence(bp=>"agtc",len=>60);

print $seq

replaces first substring matching “a” with “x”
$seq =~ s/a/x/;

print $seq;

gtattgtgggaccttcctttcatcccgaagecattccgegatgtggtccccggacctcagt
gtxttgtgggaccttcctttcatcccgaagecattccgegatgtggtccccggacctcagt

/g forces replacement everywhere
$seq =~ s/a/x/g;
print $seq;

gtxttgtgggxccttcctttextccegxxgexttecgegxtgtggteccceggxectexgt

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@' BIOINFORMATICS
A Perl \‘{orkshop P G EN O M E
1.0.1.8 = Introduction to Perl : CSCE I E NTC RESE

Replacement Operator

-s/// works nicely with capture brackets

$seq = make sequence(bp=>"agtc",len=>40);

print $seq
$seq =~ s/(a)/($1)/g;

cccgttaggctgtaccgaacaagtactaacaaagttacta
ccegtt(a)ggetgt(a)ccg(a)(a)c(a)(a)gt(a)ct(a)(a)c(a)(a)(a)gtt(a)ct(a)

-here we refer to the successfully captured pattern buffer as $1 in the replacement
string

-s/// returns the number of replacements made

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

f@' BIOINFORMATICS

Perl Workshop

T GENOME
1.0.1.8 — Introduction to Perl CSCE I E NTC RESE

Replacement Operator

-remember that the replacement string is not a regular expression, but a regular
string which may incorporate $1, $2, etc

$seq = make sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ s/..(a)../..%1../g;
print $seq;

cccgtcaattgtttagtttactttaaaagtaacgaatttc
EEEH 0 ol o BHIE6 aBlo a0 oo o a 0l 0Bl ol o 6 ol o 156G

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

rraa' BIOINFORMATICS

Perl Workshop =ik GEN
1.0.1.8 = Introduction to Perl E §=_ “ SCIE

)
-
AN

/e with Replacement Operator

-the replacement operator has a allows you to execute the replacement string as if
it were Perl code

$string = “12345”;

$seq =~ s/(\d)/1+%$1/eg;
print $seq;

23456

-in this example, the replacement is global, so it continues to replace all instances
of \d

-for each instance (a digit) it replaces it with 1+$1 (e.g. 1+2, 1+3, 1+4...)

-before the replacement is made, it evaluates the expression (e.g. to yield 3, 4, 5...)

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@' BIOINFORMATICS
A Perl \‘{orkshop e Ll G EN U M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Example of /e

-replace all occurrences of a given basepair with a random base pair

$seq = make sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ s/a/make_sequence(bp=>"agtc”,len=>1)/eg;
print $seq;

gtcccttgacaccatactggeccggatacgtgagcccacga
gtcccttggegecattctggecgggttcgtgageccgege

- /e is very powerful, but be diligent in its use
- you are creating and evaluating Perl code at run time
 some obvious security issues come to mind, if the code depends on user input

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

 BIOINFORMATICS
r@? Perl Workshop

el GENOME
1.0.1.8 — Introduction to Perl CSCE I E NTC RESE

Example of /e

-a common use of /e is to use sprintf to reformat the matched string

replace all numbers with decimals with 3-decimal counterparts
$seq =~ s/(\d+\.\d+)/sprintf(“%.3f”,$1)/eg;

-if you're working for a dictatorship, you could use this censoring one-liner

replace 40 characters on left/right of a keyword
with [censored NNN characters] message

$seq =~ s/(.{40}government.{40})/sprintf(“[censored %d characters]”,length($1))/eg;

6/24/2008

1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

rr:aa' BIOINFORMATICS

Perl Workshop

SSSTEEC GENOME
1.0.1.8 — Introduction to Perl : CSCE I E NTC RESE

Transliteration with tr///

-a quick and dirty replacement can be made with the transliteration operator,
which replaces one set of characters with another

* tr/SEARCHLIST/REPLACEMENTLIST/

$seq = make sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ tr/atgc/1234/;
print $seq;

ttgagtgatcagcgtgctcccgtaatggtcagaaaaacag
2231323124134323424443211233241311111413

-in this example, a—>1 t—2 g—3 c—4

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

Perl Workshop

rraa' BIOINFORMATICS

1.0.1.8 = Introduction-to Perl

Transliteration with /d - deletion

you can use tr to delete characters
- /d deletes found but unreplaced characters

$seq = make sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ tr/at//d;
print $seq;

ccgecgttgegatgettgattgaatttcagacccggectgt
ccgeggeggeageeccegsecs

print $seq;

$seq =~ tr/gcat/12/d;

print $seq;
ggtcctccaacaggagtttacgttaatgattgtgcaaagg
112222211121111211

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r’ag BIOINFORMATICS
Perl \‘{orkshop =g G EN D M E
1.0.1.8 = Introduction to Perl c CS‘CE I E NTC RESE

Transliteration with /s - squashing

- /s squashes repeated transliterated characters into a single instance
- helpful to collapse spaces

$x = "1223334444";

$x =~ tr/1234/abcd/ # abbcccdddd

$x =~ tr/1234/abcd/s # abcd

$y = "1 22 333 4444";

$y =~ tr/ / /s # 1 22 333 4444

$y =~ tr/ / /s # 1 22 333 4444

$y =~ tx/ //s # 1 22 333 4444 same as above

-if you do not provide a replacement list, then tr will squash repeats without
altering rest of string

$x = "1 22 333 44447,

$x =~ tr/0-9//s
$x =~ tr/0-9 //s

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

r@' BIOINFORMATICS
A Perl \‘{orkshop | = L G EN O M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Transliteration returns number of replacements

-number of transliterations made is returned
- use this to count replacements, or characters

$x = "1 22 333 44447,

~ tr/1234/abcd/ # $x — abbcccdddd $cnt — 10

$x
$x =~ tr/0-9// # $x unchanged $cnt — 10

$y = "encyclopaedia”;
$cnt = $y =~ tr/aeiou// # $y unchanged $cnt > 6

/c complements the search list - i.e., replace all non-vowel characters
$cnt = $y =~ tr/aeiou//c # $y unchanged $cnt — 7

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

Perl Workshop
1.0.1.8 = Introduction-to Perl

BIOINFORMATICS

f
ia

ion to Perl

Introduct
Session 7

* you now know

- context of match operator
- replacing text with s///

- use of transliteration txr///

27

1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text

(c]
o
o
)]

~
s
o~

~

O

