
6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 1

1.0.1.8 – Introduction to Perl

1.0.1.8.7
Introduction to Perl
Session 7

· global searches
· context of =~
· replacement operator

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 2

1.0.1.8 – Introduction to Perl

Recap of substr()

· we’ve seen how substr() can be used to manipulate a string
· extract, insert, replace, remove

· regions affected by substr() are defined by position, not content

get the first 5 characters
substr($string,0,5);

insert “abc” at position 3 (after 3rd character)
substr($string,3,0,”abc”);

replace first 5 characters with “abc”
substr($string,0,5) = “abc”;
replace first 5 characters and retrieve what was replaced
$old = substr($string,0,5,”abc”);

remove 5 characters at position 3
substr($string,3,5,””);

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 3

1.0.1.8 – Introduction to Perl

Recap of =~

· we used the operator =~, which binds a string to a pattern match, to test a string
using a regular expression

· so far, we only tested whether the regex matched
· we will now look at how to extract

· what was matched
· a*b can match b, ab, aab, aaab, ...

· how many times a match was found
· where in the string a match was found

· we will also see how to use the replacement operator s/// to replace parts of a
string which match a regex

if($string =~ /REGEX/) { ... }

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 4

1.0.1.8 – Introduction to Perl

Capturing Matches

· capture brackets are used to extract parts of a string that matched a regex
· text captured is available via special variables

$string = “sheep”;

if ($string =~ /e*p/) {
we know it matched, but we don’t know what part of $string matched

}

if ($string =~ /(e*p)/) {
text within capture brackets available in pattern buffer $1
$matched = $1;
print “$matched in $string matched”;

}

eep in sheep matched

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 5

1.0.1.8 – Introduction to Perl

Pattern Buffers

· the pattern buffers $1, $2, $3 store the text matched within first, second, third, ...
set of capture brackets
· $n is an empty string if no text matched

$string = “53 big sheep”;

if ($string =~ /(\d+) \w+ (\w+)/) {
($number,$animal) = ($1,$2);
print “saw $number $animal”;

}

saw 53 sheep

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 6

1.0.1.8 – Introduction to Perl

Pattern Buffers

· buffers are reassigned values on each successful search

· be careful when using $n, since values may become reset or go out of scope
· $n defined until end of current code block or next successful search, which ever first

· use special variables @- and @+ to determine number/location of submatches
· @- match start
· @+ match end

$string = “53 big sheep”;

if ($string =~ /(\d+) \w+ (\w+)/) {
$string =~ /(pig)/; # pattern buffers not reset
$string = ~ /(.ig)/; # pattern buffers reset
($number,$animal) = ($1,$2);
print “saw $number $animal”;

}

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 7

1.0.1.8 – Introduction to Perl

Bypassing Pattern Buffers

· the match operator can return the matched text directly, depending on the
context
· in scalar context, =~ returns the number of captured matches
· in list context, =~ returns the text of captured matches

· we have already seen the use of =~ in scalar context

· now we turn to =~ in list context

$string = “53 big sheep”;

scalar context, no capture brackets – returns 0/1 match success
my $result = $string =~ /\w/; $result → 1

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 8

1.0.1.8 – Introduction to Perl

Match List Context

·=~ will return the patterns that matched within the capture brackets

· remember that the pattern buffers $1, $2, $3 will store the contents captured by
the brackets

· several special variables store pattern buffer result
· @+ stores offsets of the end of each pattern match
· @- stores offsets of the start of each pattern match
· $+ stores the last pattern match
· $#- or $#+ stores the number of patterns matched

· $n can be expressed as substr($string, $+[n] , $+[n] - $-[n]);

$string = “53 big sheep”;
my @matches = $string =~ /(\w)(\w) (\w)/;

@matches → qw(5 3 b)

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 9

1.0.1.8 – Introduction to Perl

$+ and @+ and @-

· three special variables help interrogate the search results

$string = “0123456789”;

my @matches = $string =~ /.([1-3]+)..([6-8]+)/;

$+ stores the last successfully matched subpattern
print $+;
678

@- stores the positions of match starts of subpatterns
$-[0] holds the offset of start of the whole match
print @-;
0 1 6

@- stores the positions of match ends of subpatterns
$-[0] holds the offset of end of the whole match
print @+;
10 4 9

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 10

1.0.1.8 – Introduction to Perl

Global Matching

· so far, we’ve written a regular expression that may match multiple parts of
interest in a string

· we can find all match instances of a regular expression by using global matching
· global matching is toggled using /g flag

· in a list context, a global match will return all matches on a string to a pattern

$clone = “M0123B03”;
if ($clone =~ /(\w)(\d{4})(\w)(\d{2})/) {
($lib,$plate,$wellchr,$wellint) = ($1,$2,$3,$4);

}

$string = “53 big sheep”;
@matches = $string =~ /[aeiou]/g;

@matches → qw(i e e)

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 11

1.0.1.8 – Introduction to Perl

Example with /g

· extracting all subsequences matching a regex

random 1000-mer
$seq = make_sequence(bp=>"agtc",len=>1000);

all subsequences matching at.gc
@match = $seq =~ /at.gc/g;

print @match;

sub make_sequence {
%args = @_;
@bp = split("",$args{bp});
$seq = "";
for (1..$args{len}) {
$seq .= $bp[rand(@bp)];

}
return $seq;

}

atcgc atagc atagc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 12

1.0.1.8 – Introduction to Perl

/g with capture brackets

· capture brackets can be used with /g to narrow down what is returned
· if no capture brackets are used, /g behaves as if they flanked the whole pattern

· /at.gc/g equivalent to /(at.gc)/g

random 1000-mer
$seq = make_sequence(bp=>"agtc",len=>1000);

all subsequences matching at.gc
@match = $seq =~ /at(.)gc/g;

print @match;

c a a

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 13

1.0.1.8 – Introduction to Perl

/g with multiple capture brackets

· if you have multiple capture brackets in a /g match, each matched subpattern will
be added to the list

$string = “a1b2c3”;

on each iteration of the match two elements will be pushed onto the list
@match = $string =~ /(.)(.)/g;

print @match;

a 1 b 2 c 3

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 14

1.0.1.8 – Introduction to Perl

/g in scalar context

· in scalar context, the global match returns 0 or 1 based on the success of the next
match in the string
· it keeps track of the previous match
· used in conjunction with while

$seq = make_sequence(bp=>"agtc",len=>1000);

while ($seq =~ /(at.gc)/g) {
$match = $1;
print “matched $match”;

}

matched atcgc
matched attgc
matched attgc
matched atcgc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 15

1.0.1.8 – Introduction to Perl

/g in scalar context

· to determine where the match took place, use pos
· pos $string returns the position after the last match

$seq = make_sequence(bp=>"agtc",len=>1000);

while ($seq =~ /(at.gc)/g) {
$match = $1;
$matchpos = pos $seq;
print "matched $match at ",$matchpos-5,” around “,substr($seq,$matchpos-7,9);

}

matched atcgc at 106 around ccatcgccc
matched atggc at 241 around atatggcga
matched atggc at 271 around agatggctc
matched attgc at 507 around tcattgcgc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 16

1.0.1.8 – Introduction to Perl

Manipulating Search Cursor

·pos($string) returns the current position of the search cursor
· within a while loop, this is the position at the end of the last successful match

· you can adjust the position of the cursor by changing the value of pos($string)
· pos can act like an l-value (just like substr)

$seq = make_sequence(bp=>"agtc",len=>10);

while ($seq =~ /(..)/g) {
print "matched $1 at “, pos $seq;
back up the cursor one character
pos($seq)--;

}

attgatgatt
matched at at 2
matched tt at 3
matched tg at 4
matched ga at 5
...

· adjusting cursor position is the only way to return
overlapping search results
· in this example, we return all pairs of adjacent

bases in the string, not just abutting ones

· a search finds pair bp[i]bp[i+1] and the
cursor is at i+2 at the end of the search

· to find bp[i+1]bp[i+2] we need to back the
cursor up to i+1

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 17

1.0.1.8 – Introduction to Perl

Replacement Operator

· we have seen how substr() can be used to replace subtext at specific position
· what if we want to replace all occurrences of one substring with another?

· we use s/REGEX/REPLACMENT/
· REPLACEMENT is not a regular expression – it is a string

$seq = make_sequence(bp=>"agtc",len=>60);

print $seq
replaces first substring matching “a” with “x”
$seq =~ s/a/x/;
print $seq;

gtattgtgggaccttcctttcatcccgaagcattccgcgatgtggtccccggacctcagt
gtxttgtgggaccttcctttcatcccgaagcattccgcgatgtggtccccggacctcagt

/g forces replacement everywhere
$seq =~ s/a/x/g;
print $seq;

gtxttgtgggxccttcctttcxtcccgxxgcxttccgcgxtgtggtccccggxcctcxgt

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 18

1.0.1.8 – Introduction to Perl

Replacement Operator

·s/// works nicely with capture brackets

· here we refer to the successfully captured pattern buffer as $1 in the replacement
string

·s/// returns the number of replacements made

$seq = make_sequence(bp=>"agtc",len=>40);

print $seq
$seq =~ s/(a)/($1)/g;

cccgttaggctgtaccgaacaagtactaacaaagttacta
cccgtt(a)ggctgt(a)ccg(a)(a)c(a)(a)gt(a)ct(a)(a)c(a)(a)(a)gtt(a)ct(a)

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 19

1.0.1.8 – Introduction to Perl

Replacement Operator

· remember that the replacement string is not a regular expression, but a regular
string which may incorporate $1, $2, etc

$seq = make_sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ s/..(a)../..$1../g;
print $seq;

cccgtcaattgtttagtttactttaaaagtaacgaatttc
cccg..a..tgt..a....a....a..a..a....a..tc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 20

1.0.1.8 – Introduction to Perl

/e with Replacement Operator

· the replacement operator has a allows you to execute the replacement string as if
it were Perl code

· in this example, the replacement is global, so it continues to replace all instances
of \d

· for each instance (a digit) it replaces it with 1+$1 (e.g. 1+2, 1+3, 1+4...)
· before the replacement is made, it evaluates the expression (e.g. to yield 3, 4, 5...)

$string = “12345”;

$seq =~ s/(\d)/1+$1/eg;
print $seq;

23456

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 21

1.0.1.8 – Introduction to Perl

Example of /e

· replace all occurrences of a given basepair with a random base pair

·/e is very powerful, but be diligent in its use
· you are creating and evaluating Perl code at run time
· some obvious security issues come to mind, if the code depends on user input

$seq = make_sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ s/a/make_sequence(bp=>”agtc”,len=>1)/eg;
print $seq;

gtcccttgacaccatactggccggatacgtgagcccacga
gtcccttggcgccattctggccgggttcgtgagcccgcgc

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 22

1.0.1.8 – Introduction to Perl

Example of /e

· a common use of /e is to use sprintf to reformat the matched string

· if you’re working for a dictatorship, you could use this censoring one-liner

replace all numbers with decimals with 3-decimal counterparts
$seq =~ s/(\d+\.\d+)/sprintf(“%.3f”,$1)/eg;

replace 40 characters on left/right of a keyword
with [censored NNN characters] message
$seq =~ s/(.{40}government.{40})/sprintf(“[censored %d characters]”,length($1))/eg;

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 23

1.0.1.8 – Introduction to Perl

Transliteration with tr///

· a quick and dirty replacement can be made with the transliteration operator,
which replaces one set of characters with another
· tr/SEARCHLIST/REPLACEMENTLIST/

· in this example, a→1 t→2 g→3 c→4

$seq = make_sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ tr/atgc/1234/;
print $seq;

ttgagtgatcagcgtgctcccgtaatggtcagaaaaacag
2231323124134323424443211233241311111413

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 24

1.0.1.8 – Introduction to Perl

Transliteration with /d - deletion

· you can use tr to delete characters
· /d deletes found but unreplaced characters

$seq = make_sequence(bp=>"agtc",len=>40);

print $seq;
$seq =~ tr/at//d;
print $seq;

ccgcgttgcgatgcttgattgaatttcagacccggcctgt
ccgcggcggcggcgcccggccg

print $seq;
$seq =~ tr/gcat/12/d;
print $seq;
ggtcctccaacaggagtttacgttaatgattgtgcaaagg
112222211121111211

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 25

1.0.1.8 – Introduction to Perl

Transliteration with /s - squashing

·/s squashes repeated transliterated characters into a single instance
· helpful to collapse spaces

· if you do not provide a replacement list, then tr will squash repeats without
altering rest of string

$x = "1223334444";

$x =~ tr/1234/abcd/ # abbcccdddd
$x =~ tr/1234/abcd/s # abcd

$y = "1 22 333 4444";

$y =~ tr/ /_/s # 1_22_333_4444
$y =~ tr/ / /s # 1 22 333 4444
$y =~ tr/ //s # 1 22 333 4444 same as above

$x = "1 22 333 4444";

$x =~ tr/0-9//s # 1 2 3 4
$x =~ tr/0-9 //s # 1 2 3 4

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 26

1.0.1.8 – Introduction to Perl

Transliteration returns number of replacements

· number of transliterations made is returned
· use this to count replacements, or characters

$x = "1 22 333 4444";

$cnt = $x =~ tr/1234/abcd/ # $x → abbcccdddd $cnt → 10
$cnt = $x =~ tr/0-9// # $x unchanged $cnt → 10

$y = "encyclopaedia";

$cnt = $y =~ tr/aeiou// # $y unchanged $cnt → 6

/c complements the search list – i.e., replace all non-vowel characters
$cnt = $y =~ tr/aeiou//c # $y unchanged $cnt → 7

6/24/2008 1.0.1.8.7 - Introduction to Perl - Searching and Replacing Text 27

1.0.1.8 – Introduction to Perl

1.0.8.1.7
Introduction to Perl
Session 7

· you now know
· context of match operator
· replacing text with s///
· use of transliteration tr///

