
6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 1

1.0.1.8 – Introduction to Perl

1.0.1.8.5
Introduction to Perl
Session 5

· while loop
· I/O
· printf and sprintf

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 2

1.0.1.8 – Introduction to Perl

Hash Recap

· hash variables are prefixed by %

· hashes are used when you need to associate two values together (key and value)
· you want to keep a count (or other statistic) associated with a key
· store information centrally that can be recalled by using a string – $options{margin}

%fruits = (red=>”apple”, green=>”grape”, yellow=>”lemon”);

for $color (keys %fruits) {
print qq($fruits{$color} is a $color fruit);

}

for $fruit (values %fruits) {
print qq(For lunch, I brought a $fruit);

}

print “There is a blue fruit” if exists $fruits{blue};
$fruits{purple} = “eggplant”;
print “Liar, $fruits{purple} is not a fruit” if exists $fruits{purple};

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 3

1.0.1.8 – Introduction to Perl

Sort Recap

· sorting is performed on a list
· an optional CODE block specifies how the sort is to be done

@nums = (1..100);
@names = qw(spot fuzz mug flop mac chew wagger);

default sort is ascending asciibetic
for $name (sort @names) { ... }

descending asciibetic
for $name (sort {$b cmp $a} @names) { ... }

ascending numerical
for $num (sort {$a <=> $b} @num) { ... }

descending numerical
for $num (sort {$b <=> $a} @num) { ... }

complex – sort by length of name, ascending
for $name (sort {length($a) <=> length($b)} @names) { ... }

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 4

1.0.1.8 – Introduction to Perl

Shorthand and *crement Operators

· several operations are so frequently performed, that most languages have
shorthand versions
· man perlop

· do not confuse the match operator ~= here

$a = $a OP $b → $a OP= $b

+ - * / short hand
$a = $a + $b → $a += $b
$a = $a - $b → $a -= $b
$a = $a * $b → $a *= $b
$a = $a / $b → $a /= $b

concatenation – add $b to string $a
$a = $a . $b → $a .= $b

post-increment/decrement operator
$a = $a + 1 → $a++;
$a = $a – 1 → $a--;

there is also ++$a and --$a – but we’ll skip these for now

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 5

1.0.1.8 – Introduction to Perl

while Loop

· we’ve already seen the for loop
· iterates over items in a list

· we now turn to the while loop, which is an iterated if
· while iterates as long as a specified condition is true

for $num (@nums) { ... }

for $key (keys %hash) { ... }

for $value (sort {$b cmp $a} values %hash) { ... }

for $word (split(“ “,$string)) { ... }

for $char (split(“”,$string)) { ... }

loops as long as CONDITION is true executes once if CONDITION is true
while (CONDITION) { if (CONDITION) {
...

} }

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 6

1.0.1.8 – Introduction to Perl

while Loop

·while can be used in the same way as for, but this practise is not encouraged
· I include it here because it nicely illustrates how while works

$count = 0;
while ($count < 5) {
print qq($count);
alter the variable used in condition
$count++;

}

0
1
2
3
4

this achieves the same result
for $count (0..4) {
print qq($count);

}

0
1
2
3
4

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 7

1.0.1.8 – Introduction to Perl

while Loop

·while loop is used in cases when the appearance of the end-condition cannot be
easily predicted

($sum,$count) = (0,0);
while ($sum < 5) {
alter the variable used in condition
$sum += rand();
$count++;
print qq(Sum of $count numbers is $sum);

}

Sum of 1 numbers is 0.520913321059197
Sum of 2 numbers is 0.644604011438787
Sum of 3 numbers is 1.22890125820413
Sum of 4 numbers is 2.09695924632251
Sum of 5 numbers is 2.73787972517312
Sum of 6 numbers is 3.21515524713323
Sum of 7 numbers is 4.19210437964648
Sum of 8 numbers is 4.62139639491215
Sum of 9 numbers is 5.02754724724218
next check of $sum < 5 fails and while loop is not repeated

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 8

1.0.1.8 – Introduction to Perl

Loop Control

· you can skip to the next loop iteration without executing the rest of the block
using next
· next if CONDITION;

· you can force termination of the loop using last
· last if CONDITION;

($sum,$count) = (0,0);
while ($sum < 5) {
$x = rand();
skip numbers smaller than 0.5
next if $x < 0.5;
$sum += $x;
$count++;
print qq(Sum of $count numbers from [0.5,1\) is $sum);

}

Sum of 1 numbers from [0.5,1) is 0.830018592532724
Sum of 2 numbers from [0.5,1) is 1.60385857429355
Sum of 3 numbers from [0.5,1) is 2.58709897752851
...

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 9

1.0.1.8 – Introduction to Perl

while with shift or pop

· you can destructively iterate across an array
· by using shift or pop, iteratively whittle an array until there are no elements left

@nums = (1..5);
shift/assignment in condition
while ($num = shift @nums) {
print qq(Found $num at front of @nums);

}

Found 1 in front of 2 3 4 5
Found 2 in front of 3 4 5
Found 3 in front of 4 5
Found 4 in front of 5
Found 5 in front of

@nums = (1..5);
shift is inside while loop
while (@nums) {
$num = shift @nums;
print qq(Found $num at front of @nums);

}

Found 1 in front of 2 3 4 5
Found 2 in front of 3 4 5
Found 3 in front of 4 5
Found 4 in front of 5
Found 5 in front of

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 10

1.0.1.8 – Introduction to Perl

challenge

· what does this code print?

@nums = (0..5);
while ($num = shift @nums) {
print qq(Found $num at front of @nums);

}

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 11

1.0.1.8 – Introduction to Perl

challenge - answer

· the code prints nothing
· the first shifted element is 0, which is FALSE and the while block immediately ends

· be careful not to jump out of while when encountering zero
· zero is a perfectly reasonable value (in a file, in an array)
· be conscious of the potential need for define in the condition
· are you testing for truth (0 is not true) or definition (0 is defined) ?

@nums = (0..5);
while (defined($num = shift @nums)) {
print qq(Found $num at front of @nums);

}

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 12

1.0.1.8 – Introduction to Perl

I/O – Reading from a File

· reading from a file is easy – just like most other things in Perl
· programs which use files typically follow these steps

· open a file and create a filehandle (special variable type)
· fetch one line at a time from the file, typically in a while loop

· you parse each line and construct a data structure that holds this information
· close the file when EOF (end of file) is encountered

· the EOF evaluates to FALSE, which nicely terminates any while loop
· process data
· optionally, write data out to another file

· we will see how to
· read from a file
· write to a file
· format strings with printf/sprintf

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 13

1.0.1.8 – Introduction to Perl

Reading from a File

· reading from a file is done in three steps

· capitalize your filehandles (convention)
· FILE, FH, HANDLE but not file, fh, or handle
· you can have multiple handles
· eventually you will use modules (IO::File) that abstract raw filehandles
· I lied, there is another variable type

1. open the file, creating a filehandle (conventionally capitalized)
open(FH,$file);

2. fetch next line from the file (via filehandle) using line operator <>
while($line = <FH>) {
...

}

3. close the filehandle (not strictly necessary, but good housekeeping)
close(FH);

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 14

1.0.1.8 – Introduction to Perl

Reading from a File

· the <> operator (slurp operator) returns the next line
· includes the trailing newline

· the test within the while() loop when used with <> is
implicitly a defined test
· a file with a “0” and trailing newline “0\n” will evaluate to

true because of the trailing newline
· a file with a trailing “0” without a newline will evaluate to

false, which is inconvenient and thus Perl applies defined
· loop ends when <> returns EOF after the last line

·<> actually returns the next record in the file
· default record terminator is “\n”, thus you get a line at a

time
· you can change the record terminator and modify the

behaviour of <> (here be dragons)

> cat file1.txt
0
1
2
3
4

open(FH,”file1.txt”);
while($line = <FH>) {
print $line;

}
close(FH);

0
1
2
3
4

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 15

1.0.1.8 – Introduction to Perl

chomping lines

· chomp safely removes the trailing
newline in a string
· it does nothing if a newline is not

present

· @list=split(“ “,$line) tokenizes the
line into words
· at whitespace (spaces or tabs)

> cat file2.txt
a b c
d e f
0 1 2
3 4
5

open(FH,"file2.txt");
while($line = <FH>) {
remove trailing newline in $line
chomp $line;
split line at whitespace (i.e. into words)
@words = split(" ",$line);
concatenate words together using “:”
print join(":",@words);

}
close(FH);

a:b:c
d:e:f
0:1:2
3:4
5

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 16

1.0.1.8 – Introduction to Perl

File Analysis Script

· we will create a script that performs the following
· reads from a file
· reports the number of words on each line
· reports the total number of lines and words in the file
· reports the average number of words per line
· returns the 5 most common words
· returns the 5 longest words

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 17

1.0.1.8 – Introduction to Perl

Step 1 – parsing the file

keep count of each word in a hash
%words = ();
keep number of words per line in an array
@wordcount = ();

open(FH,“sherlock.txt");
while($line = <FH>) {
chomp $line;
split line at a run (one or more) non-word characters : \W is the opposite of \w
@words = split(/\W+/,$line);
iterate through all words in the line
$wordcount = 0;
for $word (@words) {
accept only words which have a letter character (e.g. no numbers)
if($word =~ /[a-z]/i) { # /i is for case-insensitive match

increment count for this word
$words{$word}++;
$wordcount++;

}
}
add number of passed words in this line to the array
push @wordcount, $wordcount;

}

close(FH);

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 18

1.0.1.8 – Introduction to Perl

Step 2 – reporting word statistics

$wordcount_total = 0;
for $i (0..@wordcount-1) {
maintain count of all words seen
$wordcount_total += $wordcount[$i];
report on words on this line
print qq(line $i had $wordcount[$i] words);

}

report on word count statistics
print qq(saw),scalar(@wordcount),qq(lines in file);
print qq(saw $wordcount_total words in file);
print qq(average words/line),$wordcount_total/@wordcount;

create sorted word lists – by frequency and length
@words_common = sort { $words{$b} <=> $words{$a} } keys %words;
@words_length = sort { length($b) <=> length($a) } keys %words;

for $i (0..4) {
print qq(common word $i $words_common[$i]);

}
for $i (0..4) {
print qq(longest word $i $words_length[$i]);

}

line 0 had 9 words
line 1 had 0 words
line 2 had 0 words
...
line 12649 had 0 words
line 12650 had 0 words
line 12651 had 0 words

saw 12652 lines in file
saw 105999 words in file
average words/line 8.3780429971546

common word 0 the
common word 1 I
common word 2 and
common word 3 to
common word 4 of
longest word 0 disproportionately
longest word 1 indistinguishable
longest word 2 conventionalities
longest word 3 scissorsgrinder
longest word 4 inconsequential

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 19

1.0.1.8 – Introduction to Perl

Reading FASTA files

· FASTA file is a simple sequence format
· first line starts with “>” and contains a header
· first word in header is referred to as the ID
· sequence follows, usually 50-80 bp per line

· there are modules that help you process FASTA files
· let’s write a script to read a FASTA file and produce statistics

>gi|4878025|gb|U80929.2|CVU80929 Cloning vector pBACe3.6, complete sequence
GATCCGCGGAATTCGAGCTCACGCGTACTGATGCATGATCCGGGTTTAAACCCAGTACTCTAGATCCTCT
AGAGTCGACCTGCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTAT
CCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGA
GCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA
TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACT
...
ACTTCGTATAGTATACATTATACGAAGTTATCTAGTAGACTTAATTAAGGATCGATCCGGCGCGCCAATA
GTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGCTTGAC
ATTGTAGGACTATATTGCTCTAATAAATTTGCGGCCGCTAATACGACTCACTATAGGGAGAG

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 20

1.0.1.8 – Introduction to Perl

Step 1 – reading FASTA file

· the ^ in regexps is an anchor which matches start of line
· /^hello/ matches hello at the start of a line

· the $ in regexps is an anchor which matches end of line
· /goodbye$/ matches goodbye at the end of a line

· challenge – what does /^$/ match?

%bp = ();
open human chr22 assembly
open(FH,"/home/martink/work/ucsc/hg18/fasta/chr22.fa");
while($line = <FH>) {
chomp $line;
skip header
next if $line =~ /^>/;
we're in the sequence
store count for each unique bp
for $bp (split("",$line)) {
$bp{$bp}++;

}
}

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 21

1.0.1.8 – Introduction to Perl

Step 2 – processing base pair types

%bpstats = ();
for $bp (keys %bp) {
print count for each bp type seen
print qq($bp $bp{$bp});
keep independent count of different bp types
if ($bp =~ /[atcg]/) {

$bpstats{repeat} += $bp{$bp};
} elsif ($bp =~ /n/i) {

$bpstats{padding} += $bp{$bp};
} elsif ($bp =~ /[GC]/) {

$bpstats{gc} += $bp{$bp};
} elsif ($bp =~ /[AT]/) {

$bpstats{at} += $bp{$bp};
} else {

$bpstats{unk} += $bp{$bp};
}

}

return count of bps, by category
for $statistic (sort {$bpstats{$b} <=> $bpstats{$a}} keys %bpstats) {

print qq($statistic $bpstats{$statistic});
}

a 4510978
A 4555927
c 3824338
C 4516771
t 4480960
T 4544042
n 17
N 14789904
g 3813956
G 4517817

repeat 16630232
padding 14789921
at 9099969
gc 9034588

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 22

1.0.1.8 – Introduction to Perl

Writing to a File

· the easiest way to write to a file is to redirect the output of your script to a file
· anything printed to STDOUT will be sent to a file
· anything printed to STDERR will be sent to the screen

· to redirect both STDOUT and STDERR to a file,

· to redirect to different files,

% my_script.pl > file.txt

% my_script.pl &> file.txt

% my_script.pl > file.txt 2> file.err.txt

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 23

1.0.1.8 – Introduction to Perl

Writing to a File

· sometimes you need to write to a file from your script
· open the file with open() but prefix filename with > or >>

· >file create and overwrite if necessary
· >>file append

· pass the filehandle as the first argument to print
· print FH $num

· no comma between filehandle and arguments to print
· print FH, $num1, num2;

open(FH,”>file.txt”);

for $num (@nums) {
print FH $num,”\n”;

}

close(FH);

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 24

1.0.1.8 – Introduction to Perl

Creating a Random FASTA file

· let’s create a random 100,000 bp FASTA file

@bp = qw(a t g c A T G C);
$sequence = “”;
for (1..100000) {

$array[rand(@array)] idiom – randomly samples array
$sequence .= $bp[rand(@bp)];

}

open(FH,">randseq.fa");
print FH ">random_sequence\n";
4-argument substr returns 70 characters and replaces them with empty string
while($line = substr($sequence,0,70,"")) {

print FH $line,"\n";
}
close(FH);

>random_sequence
CCCGagttcAtGCGTCcTcATAAtgTTaGAGTcGAAtTTTgCctTaatTAGcagAcatcGTgAttaTcGg
aatctCAgagCCTCttcgcGtttTggTaTcgGcAgTcGaAaCcGCTagacatTgGaActgCcacagtAtt
...
cGcaACctCCacaAcTGgGtGgGTacagtCATGaTgCtAGtTgttTCCaTaGaGcagAcAcCttCGcCaa
TtTCgGTtTTCGACTCCCAccCgTagAAtAACGtCaCTgT

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 25

1.0.1.8 – Introduction to Perl

Formatted Output

· it is often desirable to prettify output for better readability
· pad strings to fixed number of characters
· specify number of decimals in a string

·printf is used to output a prettified string
·sprintf is used to generate a prettified string (which may be printed)

· the FORMAT_STRING specifies how the elements in the LIST are to be presented
· contains special entries like %s, %d, %f used to format LIST elements

printf FORMAT_STRING,LIST;

$formatted_string = sprintf FORMAT_STRING,LIST;

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 26

1.0.1.8 – Introduction to Perl

printf

·%d – integer output
·%f – float output
·%s – string output

·%Nx – field length N (%3d)
·%.Dx – D decimal digits, where

applicable (%.2f)
·%N.Dx – field length N with D

decimal digits, where
applicable (%5.2f)

·%0x – 0-pad (%05.2f)

·%-x – left justify (%-05.2f)

@x = qw(0 1 1.0 1.6234);

truncated, not rounded
printf "%d %d %d %d\n",@x;
0 1 1 1

default 6 decimals
printf "%f %f %f %f\n",@x;
0.000000 1.000000 1.000000 1.623400

each field length is 10
printf "%10d %10d %10f %10f\n",@x;

0 1 1.000000 1.623400

fix decimal places for floats
printf "%10d %10d %10.3f %10.3f\n",@x;

0 1 1.000 1.623

left justify first two fields
printf "%-10d %-10d %10.3f %10.3f\n",@x;
0 1 1.000 1.623

and now zero padding
printf "%-010d %010d %010.3f %010.3f\n",@x;
0 0000000001 000001.000 000001.623

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 27

1.0.1.8 – Introduction to Perl

sprintf

· let’s create a script that produces the following
· a random number
· a 5-decimal truncated version of it and its square
· a digit map (number of times each digit 0-9 seen in the number)

open(FH,">data.txt");
for $i (1..100) {
$x = rand();
@digits = ();
for $char (split("",$x)) {

count the number of times digit $char is seen
e.g. increment $digits[5] everytime 5 is seen
$digits[$char]++ if $char =~ /\d/;

}
$line = sprintf("line %3d rand %20s trunc %.5f trunc^2 %.5f digitmap %d%d%d%d%d%d%d%d%d%d",

$i, $x, $x, $x**2, @digits);
print FH $line,"\n";

}
close(FH);

line 1 rand 0.929494368378073 trunc 0.92949 trunc^2 0.86396 digitmap 2013201223
line 2 rand 0.903590672183782 trunc 0.90359 trunc^2 0.81648 digitmap 3122011222
...

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 28

1.0.1.8 – Introduction to Perl

Example - Filtering Files

· let’s take all end sequence alignments of human clones and report the average
clone sizes for different groups of clones, defined by regular expressions
· one file contains the data (coordinates)
· another file contains the filters (regexps) used to process the data

· coordinates defined in a file like this

· clone groups defined by file containing regular expressions

M2131O14 CTD-2131O14 3 80809618 80926601
M2131O15 CTD-2131O15 6 121610096 121675696
...

#comment
A01$
10$
^N
^D
^.0001

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 29

1.0.1.8 – Introduction to Perl

Step 1 – Reading coordinates and categories

%clonesize = ();
open(FH,"/home/martink/work/ucsc/hg17/bes/bacend.parsed.txt");
while($line = <FH>) {

chomp $line;
M2131O15 CTD-2131O15 6 121610096 121675696
assigning to undef effectively skips the field
($clone,undef,$chr,$start,$end) = split(" ",$line);
$size = $end - $start + 1;
keep track of size of each clone
$clonesize{$clone} = $size;

}
close(FH);

make an array of the regular expressions
@rx = ();
open(RX,"rx.txt");
while($line = <RX>) {

chomp $line;
skip past comment lines
next if $line =~ /^\s*#/;
push @rx, $line;

}
close(RX);

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 30

1.0.1.8 – Introduction to Perl

Step 2 – Processing clones

%sum = ();
%count = ();
check each clone whose size we know
for $clone (keys %clonesize) {
iterate through each regular expression
for $rx (@rx) {
if the clone matches then keep track of total size/count for this category
if($clone =~ /$rx/) {
$sum{$rx} += $clonesize{$clone};
$count{$rx} ++;
last is a flow-control key word which terminates the innermost enclosing loop
last;

}
}

}
for $rx (sort keys %sum) {
printf("group %10s num %6d avgsize %8.1f\n",

$rx, $count{$rx}, $sum{$rx}/$count{$rx});
}

group 10$ num 8502 avgsize 148126.2
group A01$ num 389 avgsize 140548.0
group ^.0001 num 195 avgsize 163235.3
group ^D num 39519 avgsize 138941.2
group ^N num 99252 avgsize 170593.5

6/10/2008 1.0.1.8.5 - Introduction to Perl - I/O 31

1.0.1.8 – Introduction to Perl

1.0.8.1.5
Introduction to Perl
Session 5

· you now know
· while loop
· reading from a file
· writing to a file
· printf/sprintf

· next time
· subroutines
· introduction to special variables
· $_ and friends

