
6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 1

1.0.1.8 – Introduction to Perl

1.0.1.8.4
Introduction to Perl
Session 4

· hashes
· sorting

do this for
clarity and

conciseness

Perlish
construct

unless you
are a donkey,
don’t do this

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 2

1.0.1.8 – Introduction to Perl

Recap

· array variables are prefixed by @ and are 0-indexed

· arrays are used when
· you have an ordered set of values, or
· you want to group values together, without caring about order

@array = (1,2,3);
@array = (1..3);

$array[0]; # first element
$array[1]; # second element
$array[-1]; # last element
$array[-2]; # second-last element

$#array; # index of last element

@newarray = @array; # make a copy of array – list context

$length = @array; # number of elements in array – scalar context

$array[$#array]; # last element
$array[@array-1]; # last element

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 3

1.0.1.8 – Introduction to Perl

Recap

· we iterated over an array in two ways
· iterate over elements
· iterate over index

· we saw that arrays grow and shrink as necessary
· push/unshift were used to add elements to back/front of array
· manipulating $#array directly changed the size of the array

@array = (1..10);

iterate over elements
for $elem (@array) {
print qq{element is $elem};

}

iterate over index
for $i (0..@array-1) {
print qq{index is $i element is $array[$i]};

}

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 4

1.0.1.8 – Introduction to Perl

Final Variable Type - Hash

· recall that Perl variables are preceded by a character that identifies the plurality of
the variable

· today we will explore the hash variable, prefixed by %
· an array is a set of elements indexed by a range of integers [0,1,2,...]
· a hash is a set of elements indexed by any set of distinct strings

animal

$animal @animal %animal
scalar array hash

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 5

1.0.1.8 – Introduction to Perl

Scalars, Arrays and Hashes

· scalar holds a single value
· “indexed” by variable name

@fruits

0

1

2

3

n-1

apple

banana

grape

pear

plum

...

$fruit

apple

%fruits

red

yellow

blue

green

purple

apple

banana

grape

pear

lemon

...

scalar array hash

· array holds any number of values
· elements indexed by integers
0..n-1, where n is the number of
elements

· elements are stored in order, i.e.
there is a sense of previous/next
element

· hash holds any number of values
· values indexed by strings (keys),

which must be unique
· values are not stored in order,

there is no sense of
previous/next element

key:valueindex:value

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 6

1.0.1.8 – Introduction to Perl

Declaring and Initializing Hashes

· a hash is composed of a set of key/value pairs
· an element is accessed using $hash{key} syntax

· c.f. $array[$index]
· whereas [] were used for arrays, { } are used in hashes

@array = (); # empty array
%fruits = (); # empty hash

$fruits{yellow} = “banana”;
$fruits{red} = qq(apple);
$fruits{green} = q(pear);

($fruits{purple},$fruits{orange}) = qw(plum mango);

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 7

1.0.1.8 – Introduction to Perl

Declaring and Initializing Hashes

· you can declare and initialize an entire hash at once
· you do not need to quote single-word keys

· hash can be interpreted as an array with even number of elements with element
2i being the key and 2i+1 being the value

%fruits = (yellow => “banana”,
red => “apple”,
green => “pear”) ;

%fruits = (yellow => “banana”,
red => “apple”,
green => “pear”);

notice the () brackets
here which are reminiscent
of initializing an array

do not use { } brackets
when initializing a hash
you’ll get strange results which
we will explore in Intermediate Perl

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 8

1.0.1.8 – Introduction to Perl

Accessing Hash Elements

· to fetch a hash value, use $hash{$key}

· if you have a list of the keys, you can iterate across the hash

· most of the time you won’t have the list of keys and will need to get it from the
hash directly – this is where keys comes in

print qq(One red fruit is an $fruits{red});
print qq(One green fruit is a $fruits{green});

@colors = qw(red green purple orange yellow);

for $color (@colors) {
print qq($fruits{$color} is $color);

}

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 9

1.0.1.8 – Introduction to Perl

Extracting Hash Keys with keys

· the keys function returns a list of the keys of the hash
· the keys are returned in no particular (but reproducible if the hash is not altered) order

@colors = keys %fruits;
for $color (@colors) {
print qq($fruits{$color} is $color);

}

it’s better to avoid a temporary variable that holds the keys
for $color (keys %fruits) {
print qq($fruits{$color} is $color);

}

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 10

1.0.1.8 – Introduction to Perl

An Example – OMG a real script!

· let’s create a script that performs the following
· creates 1000 random 4bp sequences
· stores and prints the number of times each sequence has been seen
· returns sequences and counts of all sequences that contain aaa, ccc, ggg or ttt
· returns the number of a, c, g and t characters across all sequences

@bp = qw(a t g c);
explicitly initialize the list of sequences
@sequences = ();
for (1..1000) {
set the sequence to an empty string – not necessary
$seq = “”;
for (1..4) {
add a random base pair
$seq = $seq . $bp[rand(@bp)];

}
push @sequences, $seq;

}

in Intermediate Perl you will see how to take the code above and write instead
@sequences = map { join("", map { qw(a t g c)[rand(4)] } (1..4)) } (1..1000);

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 11

1.0.1.8 – Introduction to Perl

An Example

· we now have our 1,000 random sequences

· let’s count how many times each sequence appears
· we’re going to use a hash
· the key is the sequence
· the value is the number of times it is seen

@sequences ← qw(atgc aatg ggtc ... ggtc);

%sequence_count = ();

for $seq (@sequences) {
$sequence_count{$seq} = $sequence_count{$seq} + 1;

}

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 12

1.0.1.8 – Introduction to Perl

An Example

· to print the number of times each sequence has been seen, iterate through the
hash of counts

· how many unique sequences were seen?
· this is the number of keys in the hash

for $seq (keys %sequence_count) {
print qq(sequence $seq seen $sequence_count{$seq} times);

}

sequence acgc seen 3 times
sequence ggta seen 2 times
sequence aacg seen 3 times
sequence gatt seen 6 times
...

my $unique_sequence_count = keys %sequence_count;
print qq(Saw $unique_sequence_count unique sequences);

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 13

1.0.1.8 – Introduction to Perl

An Example

· now let’s report on sequences that contain aaa, ttt, ggg or ccc
· still iterating across the entire hash
· applying regex to key – using alternation via | (i.e. aaa OR ttt OR ccc OR ggg)

for $seq (keys %sequence_count) {
if ($seq =~ /aaa|ttt|ccc|ggg/) {
print qq(3-homo polymer sequence $seq seen $sequence_count{$seq} times);

}
}

3-homo polymer sequence aaag seen 3 times
3-homo polymer sequence gaaa seen 4 times
3-homo polymer sequence aaaa seen 9 times
3-homo polymer sequence accc seen 2 times
3-homo polymer sequence cccc seen 5 times
3-homo polymer sequence tttt seen 4 times
...

regex “|” is alternation
$str =~ /this|that/;

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 14

1.0.1.8 – Introduction to Perl

An Example

· finally, let’s count all the base pairs across all sequences

%bp_count = ();
method 1 – iterate across sequences, split sequence into list of characters
for $seq (@sequences) {
for $bp (split(“”,$seq)) {
$bp_count{$bp} = $bp_count{$bp} + 1;

}
}
method 2 – iterate across hash, split key, increment by hash value
for $seq (keys %sequence_count) {
for $bp (split(“”,$seq)) {
$bp_count{$bp} = $bp_count{$bp} + $sequence_count{$seq};

}
}

for $bp (keys %bp_count) {
print qq(base pair $bp seen $bp_count{$bp} times);

}

base pair c seen 1053 times
base pair a seen 979 times
base pair g seen 997 times
base pair t seen 971 times

split(“”,$string)
produces list of
individual characters
in $string

split(“”,”baby”)
→
qw(b a b y)

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 15

1.0.1.8 – Introduction to Perl

Iterating Across a Hash with values

· consider the task of determining the average number of times a sequence
appears
· we want the sequence counts, but not necessarily the sequences
· we don’t care about the key
· we care about the value

· we can accomplish this by verbosely iterating across with keys and fetching the
counts via $sequence_count{$key}

· we can be more concise by using values

$sum = 0;
for $seq (keys %sequence_count) {
$sum = $sum + $sequence_count{$seq};

}
print “average sequence count is ”,$sum / keys %sequence_count;

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 16

1.0.1.8 – Introduction to Perl

Iterating across a Hash with values

· recall that keys produced a list of a hash’s keys
· values returns a list of a hash’s values

%fruits

red

yellow

blue

green

purple

apple

banana

grape

pear

lemon

...

hash

keys %fruits → qw(red yellow blue green purple)

values %fruits → qw(apple banana grape pear lemon)

key:value

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 17

1.0.1.8 – Introduction to Perl

Iterating across a Hash with values

· we’re now in a position to determine the average count
· if not, assume position

· remember that a hash has no inherent order
· when you use keys, generally it is to use the list for iterating over the hash
· when you use values, generally it is because you don’t need the keys

$sum = 0;
for $count (values %sequence_count) {
$sum = $sum + $count;

}
print “average sequence count is ”,$sum / keys %sequence_count;

averge sequence count is 4.01606425702811

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 18

1.0.1.8 – Introduction to Perl

Checking for Existence

· given an array, you can easily determine whether a certain index is populated
· fetch $#array
· elements indexed by 0..$#array exist, though any of them may be undefined (undef)

· given a hash, it is frequently desirable to check whether a certain key exists
· like with arrays, a key may exist but point to an undefined value (undef)

%fruits

red

yellow

blue

green

apple

0

undef

hash

if $fruits{red} # value=apple, TRUE

if $fruits{yellow} # value=0, FALSE
if defined $fruits{yellow} # value=0, 0 is defined → TRUE

if $fruits{blue} # value=undef, FALSE
if defined $fruits{blue} # value=undef, FALSE
if exists $fruits{blue} # value=undef, key exists → TRUE

if exists $fruits{green} # no such key, FALSE

key:value

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 19

1.0.1.8 – Introduction to Perl

Testing Values with defined vs exists

·exists is used on arrays/hashes to check whether an element/key has ever been
initialized
· an element is true only if it is defined
· an element is defined only if it exists
· both statements are not necessarily true in the converse

· e.g., 0 is defined but is not true
· e.g., undef exists, but it is not defined

· be conscious of testing values (e.g. counts) which may be zero
· are you testing for truth (excludes zero) or definition (includes zero)

if $sequence{atgc} # TRUE only if atgc key exists and hash value is TRUE

if defined $sequence{atgc} # TRUE if atgc key exists and hash value is defined (e.g. 0)

if exists $sequence{atgc} # TRUE if atgc key exists (hash value may be undefined)

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 20

1.0.1.8 – Introduction to Perl

Quick Hash Recap

%fruits = ();
$fruits{red} = “apple”;
$fruits{green} = “pear”;
$fruits{yellow} = “lemon;

keys %fruits; # qw(red green yellow), but in no particular order
values %fruits; # qw(apple pear lemon), but in no particular order

(but compatible with output of keys)

for $color (keys %fruits) {
... $fruits{$color} ...
}

for $fruit (values %fruits) {
... $fruit ...
}

print “no color purple” if ! exists $fruits{purple};
print “found color red” if exists $fruits{red};
print “found red fruit” if defined $fruits{red};

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 21

1.0.1.8 – Introduction to Perl

Sorting

· we’ve seen several Perl functions now, such as print, split and join
· they each took one or more arguments

· Perl’s sort is slightly different
· it takes as arguments a function and a list
· the list tells sort what to sort
· the function tells sort how to sort

· what does sorting require?
· a set of elements
· for a given pair of elements, some method to determine which comes first

· e.g. size (numbers) or alphabetical order (characters) or length (strings)

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 22

1.0.1.8 – Introduction to Perl

Sorting - Introduction

by default sort will arrange things ASCIIbetically – good for strings
@sorted_sequences = sort @sequences;

for $seq (@sorted_sequences) {
print $seq;

}

aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaac
aaag
aaag
aaat
aaat
aaat
aaca
aaca
aaca
aacc
aacc
...

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 23

1.0.1.8 – Introduction to Perl

Sorting - Introduction

remember – ASCIIbetically! – bad for numbers
for $num (sort (1..20)) {
print $num;

}

1
10
11
12
13
14
15
16
17
18
19
2
20
3
4
5
6
7
8
9

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 24

1.0.1.8 – Introduction to Perl

Sorting – Specifying How

· to tell sort how to sort, the sort { CODE } LIST paradigm is used
· CODE is Perl code that informs sort about the relative ordinality of two elements

· the <=> is the spaceship operator
· returns relative ordinality of numbers

@nums = (1..20);

default sort – asciibetic – not what we want
@nums_sorted = sort @nums;

numerical sort, ascending order
@nums_sorted = sort { $a <=> $b } @nums

-1 if $a < $b
$a <=> $b → 0 if $a == $b

+1 if $a > $b

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 25

1.0.1.8 – Introduction to Perl

Sort – Specifying How

· while <=> is the operator for relative ordinality of numbers, cmp is the
corresponding operator for strings

asciibetic sort, ascending order
@sequences_sorted = sort { $a cmp $b } @sequences;

{ $a cmp $b } is sort’s default behaviour
the above gives the same result as
@sequences_sorted = sort @sequences;

-1 if $a lt $b
$a cmp $b → 0 if $a eq $b

+1 if $a gt $b

lt, eq, gt
string equivalents of
<, ==, > comparisons

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 26

1.0.1.8 – Introduction to Perl

Sort – Specifying Direction

· to specify the direction of sort, it is sufficient to exchange the position of the $a
and $b variables

numerical sort, ascending order
@nums_sorted = sort { $a <=> $b } @nums

numerical sort, descending order
@nums_sorted = sort { $b <=> $a } @nums

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 27

1.0.1.8 – Introduction to Perl

Sorting in Place

· you can sort in place, without defining temporary variables

·sort returns a list, so you can do anything with the output of sort that you can do
with a list

· what do you think these do?

sort in place
@sequences = sort @sequences;

sort and concatenate in place
$big_sequence = join(“”, sort @sequences);

$x = sort @sequences;
($y) = sort @sequences;

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 28

1.0.1.8 – Introduction to Perl

More Complex Sorting

· the CODE passed to sort can be anything you want
· remember, it is expected to return -1, 0 or 1 based on the relative ordinality
· it can use other information to sort your elements

· applying a function to $a and $b during sort is common
· sort based on transformed values

recall length() returns the length of a string
@strings = sort { length($a) <=> length($b) } @strings

for some function f()
sort { f($a) <=> f($b) } @array

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 29

1.0.1.8 – Introduction to Perl

Shuffling

· you can short circuit the sort algorithm by feeding it random results

· here relative ordinality is not based on the value of sorted elements, but
determined based on two random numbers

· since CODE should return -1, 0, 1 all you need is to return one of these values, at
random
· rand(3) returns a random float in the range [0,3)
· int(rand(3)) truncates the decimal, resulting in random value from [0,1,2]
· int(rand(3))-1 therefore maps randomly onto [-1,0,1]

sort { rand() <=> rand() } @array

sort { int(rand(3)) - 1 } @array

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 30

1.0.1.8 – Introduction to Perl

Sorting Based on Hash Values

· frequently you want to iterate through an array or hash in an ordered fashion
based on array or hash contents

· we iterated through the hash using keys, but remember that this was done in no
order in particular (hashes aren’t ordered data structures)

· recall the %sequence_counts hash
· how do we iterate across it from most to least frequently seen sequence?

· we want the keys to be sorted based on their associated values
· first key points to largest value
· second key points to second-largest value, etc

this iteration is in no particular order
for $seq (keys %sequence_count) {
print qq(sequence $seq seen $sequence_count{$seq} times);

}

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 31

1.0.1.8 – Introduction to Perl

Sorting Based on Hash Values

this iteration is from most to least common sequence
for $seq (sort { $sequence_count{$b} <=> $sequence_count{$a} } keys %sequence_count) {
print qq(sequence $seq seen $sequence_count{$seq} times);

}

sequence tcca seen 11 times
sequence ctcg seen 11 times
sequence aagc seen 10 times
sequence tatc seen 10 times
sequence cgcg seen 10 times
sequence ggga seen 8 times
sequence cccg seen 8 times
sequence tata seen 8 times
sequence gagc seen 8 times
sequence ccga seen 8 times
sequence cttt seen 8 times
sequence gtga seen 7 times
sequence tgct seen 7 times
...

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 32

1.0.1.8 – Introduction to Perl

Sorting Based on Array Values

· consider an array of 10 random numbers

for (1..10) { push @random_numbers, rand() }

iterate across the index of the array in the order it was created
for $i (0..@random_numbers-1) {
print qq(index $i value $random_numbers[$i]);

}

sort across the index based on array values – ascending, numerical order
for $i (sort { $random_numbers[$a] <=> $random_numbers[$b] } (0..@random_numbers-1)) {
print qq(index $i value $random_numbers[$i]);

}

index 4 value 0.00419793862081264
index 3 value 0.0509500776300023
index 9 value 0.141159687585446
index 1 value 0.247935712860926
index 2 value 0.381146766836238
index 6 value 0.390908373233685
index 7 value 0.438150045622688
index 8 value 0.605247161178035
index 0 value 0.735566278709605
index 5 value 0.973254105396197

index 0 value 0.735566278709605
index 1 value 0.247935712860926
index 2 value 0.381146766836238
index 3 value 0.0509500776300023
index 4 value 0.00419793862081264
index 5 value 0.973254105396197
index 6 value 0.390908373233685
index 7 value 0.438150045622688
index 8 value 0.605247161178035
index 9 value 0.141159687585446

(A)

(B)

(A) (B)

6/3/2008 1.0.1.8.4 - Introduction to Perl - Hashes and Sorting 33

1.0.1.8 – Introduction to Perl

1.0.8.1.4
Introduction to Perl
Session 4

· you now know
· all about hashes
· declaring and initializing a hash
· iterating across keys and values of a hash
· checking for existence of a key
· checking for definition of a value
· numerical and asciibetical sorting
· changing sort order
· random shuffling
· sorting based on complex conditions
(and that's a lot!)

