
5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 1

1.0.1.8 – Introduction to Perl

1.0.1.8.3
Introduction to Perl
Session 3

· lists and arrays
· for loop
· context

do this for
clarity and

conciseness

Perlish
construct

unless you
are a donkey,
don’t do this

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 2

1.0.1.8 – Introduction to Perl

Recap

· scalar variables are prefixed by $ and can contain characters or numbers
· we saw the , as the list operator

· recall substr(STR,OFFSET,LEN,NEWSTR) was used to isolate parts of a string, and
· return a substring
· replace the isolated substring with another string STR
· if LEN=0 then NEWSTR is inserted
· if LEN>0 and NEWSTR=“” then part of STR is deleted

print $a,$b,$c ;

($a,$b,$c) = (1,2,3) ;

deletes first 3 characters # inserts $new at 5th character
substr($string,0,3,””); substr($string,5,0,$new);

a list

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 3

1.0.1.8 – Introduction to Perl

A New Variable – the Array

· recall that Perl variables are preceded by a character that identifies the plurality of
the variable

· today we will explore the array variable, prefixed by @
· the variable “type” is array but the variable holds a list

· remember the stretched soup in can analogy

animal

$animal @animal %animal
scalar array hash

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 4

1.0.1.8 – Introduction to Perl

Initializing Arrays

· to initialize the array, pass a list
· we initialized a scalar by passing a single value

· an array variable is independent from a scalar variable of the same name
· this is very important and can lead to confusion
· arrays typically have plural names (@dogs vs @dog)

$x is a scalar
$x = 2;

@x is an array
@x = (1,2,3);

while $dog and @dog are independent, different variables,
their identical names can lead to confusion

$dog = “biff”;
@dog = (“biff”,”bark”,”howl”);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 5

1.0.1.8 – Introduction to Perl

Quote Word Operator

· recall the use of qw() to easily define lists without typing quotes

· qw() returns a list and it is natural to assign the output to an array

· what happens when you try to assign output of qw() to a scalar?

initialize three scalars
($x,$y,$z) = qw(biff bark howl);

initialize an array
@dogs = qw(biff bark howl);

assign a list to a scalar? we'll see the results shortly
$x = qw(biff bark howl);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 6

1.0.1.8 – Introduction to Perl

Initializing with split

· remember split – the operator that broke up a string along a boundary

split along any amoun of whitespace
$string = “a b c d e”;
($a,$b,$c,$d,$e) = split(“ “,$string);
@letters = split(“ “,$string);

split along a single character
$string = “a:b:c:d:e”;
@letters = split(“:”,$string);

split along a string matching a regex
$string = “a1234b2332cd99310e”;
@letters = split(/\d+/,$string);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 7

1.0.1.8 – Introduction to Perl

Initializing With a Range

· recall that we used a range of letters when defining a character class in regular
expressions

· you can create a list made up of a range of numbers (successive values) using ..

· num..num (1..10) or char..char (a..z)

all letters a-to-z (a,b,c,...,z)
$is_match = $x =~ /[a-z]/;

(1..10)

equivalent to

(1,2,3,4,5,6,7,8,9,10)

but also

qw(1 2 3 4 5 6 7 8 9 10)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 8

1.0.1.8 – Introduction to Perl

Accessing Array Elements

· an array is an ordered set of elements
· elements are indexed by integers
· first element is indexed by 0 (0-indexing)
· if an array has n elements, last element is indexed by n-1

@animals $animals[0]
$animals[1]
$animals[2]

$animals[n-1]
…

array variable individual elements

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 9

1.0.1.8 – Introduction to Perl

Accessing Array Elements

· you may find the fact that the array is prefixed with @ but its elements are
prefixed with $ counter-intuitive
· you’ll see why this is later – think “arrays store lists of scalars”

an array of numbers 1 to 10
@nums = (1..10);

print $nums[0]; 1
print $nums[1]; 2
print $nums[2]; 3
print $nums[9]; 10

$nums[10] is not defined, since @nums has 10 elements
print $nums[10]; “”

settings element values
$nums[5] = 50;
$nums[6] = 60;

print $nums[5]; 50
print $nums[6]; 60
print $nums[5],$nums[6]; 50 60

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 10

1.0.1.8 – Introduction to Perl

Negative Indexing

· recall that substr had facility to accept negative offsets to indicate distance from
the end of the string

· array elements can be accessed similarly

an array of numbers 1 to 10
@nums = (1..10);

last element
print $nums[-1]; 10

second-last element
print $nums[-2]; 9

first and last elements
print $nums[0],$nums[-1]; 1 10

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 11

1.0.1.8 – Introduction to Perl

Iterating Over an Array

· the for loop (foreach is a synonym) permits you to iterate across a list

· you will likely see foreach a lot, but I prefer the shorter for

@x = (1..5);

for $num (@x) {
print $num,” “,$num*$num,”\n”;

}

1 1
2 4
3 9
4 16
5 25

foreach $num (@x) { CODE } is the same as for $num (@x) { CODE }

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 12

1.0.1.8 – Introduction to Perl

Iterating Over an Array

· you can iterate over the elements or array indices

· choose the first approach if you don’t need to determine an element’s ordinal
position

@x = (1..5);

iterate over elements
for $item (@x) {
print $item,”\n”;

}

iterate over indices
for $i (0..4) {
print $x[$i],”\n”;

}

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 13

1.0.1.8 – Introduction to Perl

Iterating Over an Array

· a short script that prints the element of an array along with a “this is the nth
element” string

@x = (1..5);

iterate over indices
for $i (0..4) {
print qq(This is the ${i}th element : $x[$i]);

}

@x = (1..5);

iterate over elements, keep counter
$counter = 0;
for $num (@x) {
print qq(This is the ${counter}th element : $num);
$counter = $counter + 1:

}

this approach
is preferred

this approach
is unnecessarily
verbose

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 14

1.0.1.8 – Introduction to Perl

Adding to an Array with Push

· there are many ways to add elements to an array
· the most common is push

· push adds elements to the end of the array

@x = ();

push single elements
push @x, 1; # @x now (1)
push @x, 2; # @x now (1,2)
push @x, 3; # @x now (1,2,3)

push a list of elements
push @x, 4, 5; # @x now (1,2,3,4,5)
push @x, qw(6 7); # @x now (1,2,3,4,5,6,7)

@y = (8,9,10);
push @x, @y; # @x now (1,2,3,4,5,6,7,8,9,10)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 15

1.0.1.8 – Introduction to Perl

Initializing an Array with Push

· you can use for to initialize an array
· frequently used with push, which adds elements to the end of an array

@x = ();

for $num (1..10) {
$num2 = $num*$num;
push @x, $num2;
print qq(added $num2, now last element is $x[-1]);

}

added 1, now last element is 1
added 4, now last element is 4
added 9, now last element is 9
...
added 100, now last element is 100

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 16

1.0.1.8 – Introduction to Perl

Arrays Grow as Necessary

· you may have noticed that we did not need to allocate memory for the array
when we defined it

· the array variable grows and shrinks as necessary to accommodate new elements

· in this example we defined the 4th element, $x[3], without explicitly definining
the 3rd element, $x[2] – Perl created memory space for $x[2] and set the value to
undef

@x = ();

$x[0] = 1; # @x now (1)
$x[1] = 2; # @x now (1,2)
$x[-1] = 3; # @x now (1,3)

$x[3] = 4; # @x now (1,2,undef,4)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 17

1.0.1.8 – Introduction to Perl

Arrays May Have undef Elements at End

· the last defined element marks the end of the array
· this applies when initializing array elements with defined elements (i.e. not undef)

· setting the last element to undef, does not shrink the array
· memory is allocated, but contents are undefined

@x = ();

$x[5] = 5; # @x now (undef,undef,undef,undef,undef,5)
$x[4] = 4; # @x now (undef,undef,undef,undef,4,5)

@x = (1..5); # @x now (1,2,3,4,5)

$x[4] = undef; # @x now (1,2,3,4,undef)
$x[3] = undef; # @x now (1,2,3,undef,undef)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 18

1.0.1.8 – Introduction to Perl

Shrinking an Array

· to extract the last element and shrink the array use pop

·shift is more popular than pop, which extracts the first element, while also
shrinking the array

@x = (1..5); # @x = (1,2,3,4,5);
$y = pop @x; # $y = 5 @x = (1,2,3,4)
$y = pop @x; # $y = 4 @x = (1,2,3)
$y = pop @x; # $y = 3 @x = (1,2)
$y = pop @x; # $y = 2 @x = (1)
$y = pop @x; # $y = 1 @x = ()
$y = pop @x; # $y = undef @x = ()

@x = (1..5); # @x = (1,2,3,4,5);
$y = shift @x; # $y = 1 @x = (2,3,4,5)
$y = shift @x; # $y = 2 @x = (3,4,5)
...

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 19

1.0.1.8 – Introduction to Perl

Arrays Grow and Shrink as Necessary

· in this example an array is created and then repeatedly elements are removed
· one element removed with pop – from the back
· one element removed with shift – from the front

@x = (1..10);

for $iteration (1..5) {
my $x_popped = pop @x;
my $x_shifted = shift @x;

print qq(on iteration $iteration shifted $x_shifted and popped $x_popped);
}

on iteration 1 shifted 1 and popped 10
on iteration 2 shifted 2 and popped 9
on iteration 3 shifted 3 and popped 8
on iteration 4 shifted 4 and popped 7
on iteration 5 shifted 5 and popped 6

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 20

1.0.1.8 – Introduction to Perl

$#array

· what the $#@! is this?
· you’ve never seen this before, but you can guess what this variable holds

· because it is prefixed by $, it holds a scalar value
· $#array holds the index of the last element in the array

· I dislike $#array – it is too noisy
· we’ll see a cleaner alternative shortly

@x = (1..5);

$last_idx = $#x; # $last_idx = 4

for $i (0..$last_idx) {
print qq($i $x[$i]);

}

for $i (0..$#x) {
print qq($i $x[$i]);

}

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 21

1.0.1.8 – Introduction to Perl

Manipulating Array Contents

· for now, these are the three ways to manipulate an array you need to be familiar
with
· remember that push can add a single element, or a list
· shift/pop only remove one element at a time

($x[0],$x[1],$x[2],…,$x[n-1],)

push

shift pop

$#x

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 22

1.0.1.8 – Introduction to Perl

Swapping Elements

· swapping elements is trivial – this may surprise you

·$x[1] is assigned to $x[0] and $x[0] is assigned to $x[1] simultaneously
· there is no need for a temporary variable to hold one of the values
· temp ← x0 ; x0 ← x1 ; x1 ← temp

consider swapping the values of two scalars

$a = 5;
$b = 6;

($a,$b) = ($b,$a);

apply the same to arrays

@x = (1,2);

($x[0], $x[1]) = ($x[1], $x[0]);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 23

1.0.1.8 – Introduction to Perl

Swapping Elements

· let’s randomly shuffle elements in an array by pair-wise swapping

@x = (1..5) # @x = (1,2,3,4,5)

($x[0],$x[-1]) = ($x[-1],$x[0]); # @x = (5,2,3,4,1)

($x[0],$x[5]) = ($x[-1],6); # @x = (1,2,3,4,1,6)

@x = (1..10);

for $swap_count (1..5) {
$i = int rand(10); # random integer in range [0,9]
$j = int rand(10); # random integer in range [0,9]
($x[$i], $x[$j]) = ($x[$j], $x[$i]);
print qq(swapped $i $j array is now) . join(" ",@x);

}

swapped 5 4 array is now 1 2 3 4 6 5 7 8 9 10
swapped 1 4 array is now 1 6 3 4 2 5 7 8 9 10
swapped 5 8 array is now 1 6 3 4 2 9 7 8 5 10
swapped 5 6 array is now 1 6 3 4 2 7 9 8 5 10
swapped 7 2 array is now 1 6 8 4 2 7 9 3 5 10

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 24

1.0.1.8 – Introduction to Perl

Introduction to Context

· make sure you are sitting comfortably – you are about to experience context
· context refers to the immediate code around a variable or operator that

influences how the variable or operator are interpreted
· consider the following, in which we assign the output of a function to a scalar

· Perl has the facility to determine that we are assigning the result of function()
to a scalar and can act accordingly

· the function could behave differently if we assign its output to an array

· for example, function($n) could return
· in scalar context - number of perfect squares from 0..$n
· in array context – the list of perfect squares from 0..$n

$x = function();

@x = function();

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 25

1.0.1.8 – Introduction to Perl

Introduction to Context

· what do you think happens in these two cases

· in case 1, we are assigning an array to an array
· Perl will copy the contents of array @x to array @y
· the two arrays will have the same contents
· the two arrays will be independent copies – changing one will not affect the other

· in case 2, we are assigning an array to a scalar
· Perl interprets the array @x in scalar context
· Perl returns the number of elements in @x
· $y now holds the length of the array, @x

case 1 # case 2
@y = @x $y = @x;

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 26

1.0.1.8 – Introduction to Perl

Determining the Length of an Array

· to obtain the number of elements in an array, evaluate it in scalar context

· since arrays are 0-indexed, an array with n elements has its last index n-1

@x = (1..5);

scalar ← array
$len = @x;

print “array has $len elements”;

@x = (1..5);

$len = @x;

for $i (0..$len-1) {
print qq(The ${i}th element is $x[$i]);

}

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 27

1.0.1.8 – Introduction to Perl

$#x vs @x

· recall that $#x provided the index of the last element in an array
·@x in a scalar context gives the number of elements

·@x-1 is easier on the eyes
·$#x has its uses, however

· recall that substr() could extract parts of a string, but was also an l-value
· well, $#x is also an l-value
· you can assign a value to $#x to explicitly set the index of the last element, effectively

growing/shrinking the array

$#x is the same as @x - 1

@x = (1..5);
print $#x; # 4
$#x = 5; # @x = (1,2,3,4,5,undef)
$#x = 3; # @x = (1,2,3,4)
$#x = 5; # @x = (1,2,3,4,undef,undef)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 28

1.0.1.8 – Introduction to Perl

More About Context

· context helps you write concise code – tread carefully

@x = (1..5);

what is the value of $y?
$y = @x + 1;

@x = (1..5);

why does this work?
for $i (0..@x-1) {
print qq($i $x[$i]);

}

@x = (1..5);

what is happening here? what is the last line printed?
for $i (0..@x) {
print qq($i $x[$i]);

}

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays 29

1.0.1.8 – Introduction to Perl

1.0.8.1.3
Introduction to Perl
Session 3

· you now know
· all about arrays
· declaring and initializing an array
· growing and shrinking arrays
· extracting elements and length of an array
· for loop
· iterating over arrays by element or index
· application of split and join to arrays
· context

· next time
· hashes

