ESE

= -
_nUN wnw,m
N___N P V;brmt
— = Dm SOlm
EMMWE SR R
= ®°c
(s} o) s Yo
c ©
[
T
< 5
_”@m 25
B o &
[o o
e v
(]
(a8
o
whd
c g =T 0
o © 52
o ” Dm .nbye
o m S emm e 20
S
s C = Q o S
d.w (0o m (D) dCC
(@] 7 w — +
=) Q »w o o
S wn - T 7

(%]
>
©
S
—
<
©
=
©
wv
+
]
|
I
-
]
(a8
O
-+
=
i
-+
O
>
o
o
-
+
=
1
(g
(e
r
o]
-

Al

S A
R TR

W
N

a,., 3 AR
i
ot .r_f.p‘d_.. . Wy

B ,U,Ju..

Workshop
1.0.1.8 =Introduction-to Perl

erl

BICINFORMATICS

l)

5/27/2008

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = = CS‘CEIENTCRESE

Recap

-scalar variables are prefixed by $ and can contain characters or numbers

-we saw the , as the list operator

print $a,$b,$c |;

a list

($a,$b,$c) = (1)2)3) 5

-recall substr (STR,0OFFSET, LEN,NEWSTR) was used to isolate parts of a string, and
- return a substring
- replace the isolated substring with another string STR
- if LEN=0 then NEWSTR is inserted
-if LEN>0 and NEWSTR=""then part of STR is deleted

ey # deletes first 3 characters # inserts $new at 5th character
e substr($string,0,3,””); substr($string,5,0,%new);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop G EN O M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

A New Variable - the Array

-recall that Perl variables are preceded by a character that identifies the plurality of

the variable
K///////animal\\\\\\\
$animal @animal sanimal
scalar array hash

-today we will explore the array variable, prefixed by @

-the variable “type” is array but the variable holds a list
-remember the stretched soup in can analogy

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop =T G EN 0 M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Initializing Arrays

-to initialize the array, pass a list
-we initialized a scalar by passing a single value

$x is a scalar
$x = 2;

@x is an array
@x = (1)2)3);

-an array variable is independent from a scalar variable of the same name
- this is very important and can lead to confusion
-arrays typically have plural names (@dogs vs @dog)

while $dog and @dog are independent, different variables,
their identical names can lead to confusion

% $dog
o @dog

“biff”;
(“biff”,”bark”,”howl”);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop | = L G EN 0 M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Quote Word Operator

-recall the use of quw() to easily define lists without typing quotes

initialize three scalars
($x,%y,%$2) = qu(biff bark howl);

initialize an array
@dogs = qu(biff bark howl);

é%P

IDIOM

-qw() returns a list and it is natural to assign the output to an array

-what happens when you try to assign output of qu() to a scalar?

assign a list to a scalar? we'll see the results shortly
$x = qu(biff bark howl);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop =T G EN 0 M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Initializing with split

‘remember split —the operator that broke up a string along a boundary

split along any amoun of whitespace
$string = “ab c¢ d &7

_ ($a,$b,$c,$d,$e) = split(“ “,$string);
%355 @letters = split(“ “,$string);

DI
split along a single character
$string = “a:b:c:d:e”;

@letters = split(“:”,$string);

split along a string matching a regex
$string = “a1234b2332cd99310e”;
@letters = split(/\d+/,$string);

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

' BIOINFORMATICS
r@a Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl CS‘CE I E NTC RESE

Initializing With a Range

-recall that we used a range of letters when defining a character class in regular
expressions

all letters a-to-z (a,b,c,...,z)
$is match = $x =~ /[a-z]/;

-you can create a list made up of a range of numbers (successive values) using ..

(1..10)

equivalent to
(1,2,3,4,5,6,7,8,9,10)
but also

qw(1 23456789 10)

‘num..num (1..10) or char..char (a..z)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BICINFORMATICS

Perl Workshop

1.0.1.8 =Introduction-to Perl

Accessing Array Elements

-an array is an ordered set of elements
-elements are indexed by integers
-first element is indexed by o (o0-indexing)

-if an array has n elements, last element is indexed by n-1

array variable individual elements

@animals

$animals| O

$animals| 1

$animals| 2

ganimals[n—l]

S

[
-

HAm

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Accessing Array Elements

-you may find the fact that the array is prefixed with @ but its elements are
prefixed with $ counter-intuitive

-you'’ll see why this is later —think “arrays store lists of scalars”

an array of numbers 1 to 10
@nums = (1..10);

print $nums[0]
print $nums[1]
print $nums[2]
print $nums[9]

5 1
5 2
5 3
;10
$nums[10] is not defined, since @nums has 10 elements

print $nums[10]; “”

settings element values

$nums[5] = 50;

$nums[6] = 60;

print $nums[5]; 50
print $nums[6]; 60
print $nums[5],$nums[6]; 50 60

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl CS‘CE I E NTC RESE

Negative Indexing

-recall that substr had facility to accept negative offsets to indicate distance from
the end of the string

-array elements can be accessed similarly

an array of numbers 1 to 10
@nums = (1..10);

last element
print $nums[-1]; 10

second-last element
print $nums[-2]; 9

first and last elements
print $nums[0],$nums[-1]; 1 10

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Perl Workshop

agia GENOME
1.0.1.8 — Introduction to Perl = CS‘CE I E NTC RESE

Iterating Over an Array

-the for loop (foreach is a synonym) permits you to iterate across a list

@x = (1..5);
for $num (@x) {

print $num,” “

}

, $num*$num, ”\n”;

(0, T VTN NS RN
N R O DR
Ul o

-you will likely see foreach a lot, but | prefer the shorter for

foreach $num (@x) { CODE } is the same as for $num (@x) { CODE }

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Perl Workshop

agia GENOME
1.0.1.8 — Introduction to Perl = CS‘CE I E NTC RESE

Iterating Over an Array

-you can iterate over the elements or array indices

@x = (1..5);

iterate over elements
for $item (@x) {
print $item,”\n”;

}

iterate over indices

&R for $i (0..4) {
oy print $x[$i],”\n”;
[[melfwi] }

-choose the first approach if you don’t need to determine an element’s ordinal
position

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

BIOINFORMATICS
ffag Perl Workshop

T GENOME
1.0.1.8 — Introduction to Perl CSCE I E NTC RESE

Iterating Over an Array

-a short script that prints the element of an array along with a “this is the nth
element” string

@x = (1..5);
iterate over indices this aPPI’OHCh
@y | for $i (0..4) { is preferred
Eﬁ print qq(This is the ${i}th element : $x[$i]); P
}
@x = (1..5);
iterate over elements, keep counter this approaCh
$counter = 0; is unnecessarily
for $num (@x) {
print qq(This is the ${counter}th element : $num); verbose
$counter = $counter + 1:
}

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

ﬁgﬁBKﬂNﬁDRHAﬂCS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Adding to an Array with Push

-there are many ways to add elements to an array

the most common is push
- push adds elements to the end of the array

@x = ();

push single elements

push @x, 1; # @x now (1)
push @x, 2; # @x now (1,2)
push @x, 3; # @x now (1,2,3)

push a list of elements
pUSh @X, 4, 5; # @x now (1)2)3)4)5)
push @x, qw(é6 7); # @x now (1,2,3,4,5,6,7)

@y = (8:9:10);
push @x, @y; # @x now (1,2,3,4,5,6,7,8,9,10)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

 BIOINFORMATICS
fi?ﬂa Perl Workshop

agia GENOME
1.0.1.8 — Introduction to Perl = CS‘CE I E NTC RESE

Initializing an Array with Push

-you can use for to initialize an array

-frequently used with push, which adds elements to the end of an array

ex = ();

for $num (1..10) {
$num2 = $num*$num;
push @x, $num2;
print qq(added $num2, now last element is $x[-1]);

)

added 1, now last element is 1
added 4, now last element is 4
added 9, now last element is 9

added 100, now last element is 100

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

' BIOINFORMATICS
r@? Perl W’orkshop G E N 0 M E
1.0.1.8 = Introduction to Perl __5 § CS‘CE I E NTC RESE

Arrays Grow as Necessary

-you may have noticed that we did not need to allocate memory for the array
when we defined it

-the array variable grows and shrinks as necessary to accommodate new elements

ax = ();

$x[0] = 1; # @x now (1)

$x[1] = 2; # @x now (1,2)

$x[-1] = 3; # @x now (1,3)

$x[3] = 4; # @ now (1,2,undef,4)

-in this example we defined the 4th element, $x| 3 |, without explicitly definining
the 3rd element, $x[2 | — Perl created memory space for $x[2| and set the value to

undef

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop e G EN 0 M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Arrays May Have undef Elements at End

-the last defined element marks the end of the array
-this applies when initializing array elements with defined elements (i.e. not undef)

ox = ();
$x[5] = 5; # @x now (undef,undef,undef,undef,undef,5)
$x[4] = 4; # @x now (undef,undef,undef,undef,4,5)

-setting the last element to undef, does not shrink the array
-memory is allocated, but contents are undefined

@x = (1..5); # @x now (1)2)3)4)5)

$x[4] = undef; # @x now (1,2,3,4,undef)
} $x[3] = undef; # @x now (1,2,3,undef,undef)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

" BIOINFORMATICS
fi?ﬂa Perl Workshop = a GENOME
1.0.1.8 = Introduction to Perl CS‘CE I E NTC RESE
Shrinking an Array
-to extract the last element and shrink the array use pop
@x = (1..5); # Ox = (1)2)3)4)5);
$y = pop @x; # 9y =5 @x = (1,2,3,4)
$y = pop @x; # %y =4 @x = (1,2,3)
$y = pop @x; # 9y = 3 ox = (1,2)
$y = pop @x; # oy =2 @x = (1)
$y = pop @x; #y =1 ex = ()
$y = pop @x; # $y = undef @x = ()

-shift is more popular than pop, which extracts the first element, while also
shrinking the array

@X = (1..5); # @x = (1)2)3)4)5);
$y = shift @x; # $y = 1 @x = (2,3,4,5)
= shift @x; # $y = 2 @x = (3,4,5)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Arrays Grow and Shrink as Necessary

-in this example an array is created and then repeatedly elements are removed
-one element removed with pop —from the back
one element removed with shift —from the front

@x = (1..10);

for $iteration (1..5) {
my $x_popped = pop @x;
my $x_shifted = shift @x;

print gqq(on iteration $iteration shifted $x_shifted and popped $x_popped);

on iteration
on iteration
on iteration
on iteration
on iteration

shifted 1 and popped 10
shifted 2 and popped 9
shifted 3 and popped 8
shifted 4 and popped 7
shifted 5 and popped 6

Ui B W N

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop e G EN O M E
1.0.1.8 = Introduction to Perl = = CS‘CE I E NTC RESE

S#array

-what the S#@! is this?

-you’ve never seen this before, but you can guess what this variable holds
- because it is prefixed by $, it holds a scalar value
- $#tarray holds the index of the last element in the array

@x = (1..5);
$last idx = $#x; # $last idx = 4
for $i (0..$last idx) {

print qq($i $x[$i]);

for $i (0..%#x) {

@% \ print qq($i $x[$i]);

-1 dislike $#array —itis too noisy
-we’'ll see a cleaner alternative shortly

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop | = o L G EN 0 M E
1.0.1.8 = Introduction to Perl __E i CSCE I E NTC RESE

Manipulating Array Contents

-for now, these are the three ways to manipulate an array you need to be familiar
with
‘remember that push can add a single element, or a list
- shift/pop only remove one element at a time

$H#x l

($x[0],$x[1],%x[2],..,$x[n-1],

shift pop

| |

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = = CS‘CEIENTCRESE

Swapping Elements

-swapping elements is trivial —this may surprise you

consider swapping the values of two scalars

$a
$b

5;
6;

($a,$b) = ($b,%a);

apply the same to arrays

ox = (1,2);

D | (sxo], $x[1]) = ($x[1], $x[0]);

-$x[1] is assigned to $x[0] and $x[0] is assigned to $x[1] simultaneously
-there is no need for a temporary variable to hold one of the values
~temp < X0 ; X0 < x1 ; X1 <« temp

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Swapping Elements

@x = (1..5) # @x = (1,2,3,4,5)
($x[0],$x[-1]) = ($x[-1],$x[0]); #@x = (5,2,3,4,1)

($x[0],$x[5]) = ($x[-1],6); # @x = (1,2,3,4,1,6)

-let’s randomly shuffle elements in an array by pair-wise swapping

@x = (1..10);

for $swap count (1..5) {
$i = int rand(10); # random integer in range [0,9]
$j = int rand(10); # random integer in range [0,9]
($x[$1], $x[$3]) = ($x[$3], $x[$i]);
print qq(swapped $i $j array is now) . join(" ",@x);

}

swapped 5 4 array isnow 1 23 4657 8 9 10
swapped 1 4 array is now 1 6 3 4257 8 9 10
swapped 5 8 array is now 1 6 3 429 7 85 10
swapped 5 6 array is now 1 6 3 427 9 8 5 10
swapped 7 2 array is now 1 6 8 427 9 3 5 10

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl _EZ : CS‘CE I E NTC RESE

Introduction to Context

-make sure you are sitting comfortably — you are about to experience context

-context refers to the immediate code around a variable or operator that
influences how the variable or operator are interpreted

-consider the following, in which we assign the output of a function to a scalar

$x = function();

-Perl has the facility to determine that we are assigning the result of function()
to a scalar and can act accordingly

-the function could behave differently if we assign its output to an array

@x = function();

-for example, function($n) could return
“in scalar context - number of perfect squares from 0..5n
~in array context —the list of perfect squares from 0..5n

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

rag BICINFORMATICS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl = CSCE I E NTC RESE

Introduction to Context

-what do you think happens in these two cases

case 1 # case 2

@y = @x $y = @x;

“in case 1, we are assigning an array to an array
%5_?? - Perl will copy the contents of array @x to array @y
wom— - the two arrays will have the same contents
-the two arrays will be independent copies — changing one will not affect the other

-in case 2, we are assigning an array to a scalar
%ﬂ@ - Perl interprets the array @x in scalar context
IDIoM - Perl returns the number of elements in @x
- Sy now holds the length of the array, @x

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

 BIOINFORMATICS
rf?_q? Perl Workshop

=" GENOME
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Determining the Length of an Array

-to obtain the number of elements in an array, evaluate it in scalar context

@x = (1..5);

scalar <« array
$len = @x;

&2

IDIOM

print “array has $len elements”;

-since arrays are o-indexed, an array with n elements has its last index n-1

@x = (1..5);
$len = @x;
for $i (0..$len-1) {

print qq(The ${i}th element is $x[$i]);
}

5/27/2008

1.0.1.8.3 - Introduction to Perl - Lists and Arrays

raa' BICINFORMATICS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

SHx vs @x

-recall that $#x provided the index of the last element in an array

-@x in a scalar context gives the number of elements

$#x 1s the same as (@x - 1

-@x-1 is easier on the eyes

- $#x has its uses, however
-recall that substr() could extract parts of a string, but was also an /-value
-well, $#x is also an l-value

“you can assign a value to $#x to explicitly set the index of the last element, effectively
growing/shrinking the array

@x = (1..5);
print $#x; # 4
= $#x = 5; # @x = (1,2,3,4,5,undef)
%ﬁf $H#x = 3; # @x = (1,2,3,4)
IDIoM $#ix = 5 # @x = (1,2,3,4,undef,undef)

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

More About Context

-context helps you write concise code —tread carefully

@x = (1..5);
what is the value of $y?
$y = @x + 1;
@x = (1..5);

@3 # why does this work?
oiom | for $i (0..@x-1) {

print qq($i $x[$i]);
}

@x = (1..5);

what is happening here? what is the last line printed?

AR | for $1 (0..0x) {
? print qq($i $x[$i]);
}

LUISAGE

5/27/2008 1.0.1.8.3 - Introduction to Perl - Lists and Arrays

ESE

29

>
S x
3
© ©
c S wn
g 5E
[> o o =
= = c ©
T v o e.m
nWm mn
c 8O Q-5
| =55 95
— = ¥s 82
b “.mS v (©
Y EEE &=
o. ”.m.ne S =
o ssw§ °0
S
- 2 88 5 < o O
c Orane >
nagag o o
) X 5 2 wE o »5)
[y _cC naX wv
T m 2 85 R 3SE LI € o
— Oamwmlomm...m =
5 C C =0 2% 50 a5 - ®©
< O T T O W v = © O =
=] X
o.ﬂ O-....- e.
- W > c
£ g . .

1.0.1.8.3 - Introduction to Perl - Lists and Arrays

1.0.1.8 =Introduction-to Perl

BICINFORMATICS
Perl Workshop

o0
(o]
(@)
o~

~
~
o

~
LN

f
=

