ESE

P
S]

Workshop
1.0.1.8 =Introduction-to Perl

BIOINFORMATICS
erl

l)

ion to Perl

Introduct
Session 2

ons

trings

ing s

* manipulat
- basic regular express

e

Mo LY
_._pa/a“..,a.‘ A

)
SREh
e
W Jn.—/.
LA

X
)
Q0
(]
oz
©
=
©
<
+
>
—
T
w
Qo
<
=
-+
wn
1
—
5]
o
[e]
-+
-
o

5/20/2008

N
el

BICINFORMATICS

Perl Workshop

1.0.1.8 =Introduction-to Perl

administrative

|
[Tp]
m

M=
=0
y -
HNmM

i |
o
1Ly

-workshop slides are available at mkweb.bcgsc.ca/perlworkshop

<sop

QENOME SCiENcEs contre @

T B8 | L B ah § [et Serscss € xrise $O3S 008
et n e

T

Intraduction te Perl
Session 2

Tani pul §tiFeg SUINgES

basicregaier expressions

[Camite &re known 1o $pit up 6 16 feetl in the US and 11 meters everywhaers elis, |

LECTURE BLIDE VIEWER

1.0.1.8.2
Iertraduetnm 10 Pedl
B n /8
aud Manipulniion and Regular Expressions
u Ky ke i

DOWNLDADE

3 af Powairpoint
F) &6 POF
WIEWERE REMOTE

[,

EERSION REEOURCESR

7| ewd Hangpalyline sed Reyelss Euprossims | Teu, 20 Moy 2880 | TOOAT | 1182

|t Musigal vt and B gar Enpransinns | B =]

L e o o
LT
| onte o
| o
[l]
fonde g

|
b | M b | s

5/20/2008

1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Recap

-scalar variables are prefixed by $ sigil and can contain characters or numbers

-Perl interpolates variables in double quotes “ “ but not in single quotes *

double quote operator qq() single quote operator q()
$var = 1

qq(var) var q(var) var
qq(“Var”) “Var” q(“Var”) “Var”
qq($var) 1 q($var) $var
qq(${var}2) 12 q(${var}2) ${var}2
qq{\$var} $var q{\$var} \$var
qq/ “$var’/ ‘1’ q/ ‘$var’/ ‘$var’

== and eq are the equality test operators for numbers and strings

-undef is a special keyword used to undefine a variable

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

rag BIOINFORMATICS
Lol Perl Workshop =T G EN 0 M E
1.0.1.8 = Introduction to Perl = CSCE I E NTC RESE

String Manipulation

-manipulating strings in Perl is very easy
-large number of functions help you massage, cut, and glue strings together

-today we will explore how to
* concatenate strings
- replace parts of a string
- determine the length of a string
- change the case of a string

-1 will also introduce regular expressions, which can be used to
- split a string on a boundary
- search a string for patterns

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Concatenating Strings

-we’ve already seen one way to concatenate values of scalar variables
* concatenation operator .
- create a new variable and use interpolation to place strings in appropriate spot

$x = “baby”;

Sy = “is”;

$z = “crying”;

$s = “ %

$phrase = $x . “ “ . $y . “ “ . $z;
$phrase = $x . $s . $y . $s . $z;
$phrase = qq($x $y $z);

$phrase = qq($xsysz);

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Concatenating with join

-use perldoc —f FUNCTION to learn about a built-in Perl function

} > perldoc -f join
join EXPR,LIST

Joins the separate strings of LIST into a single string with fields
separated by the value of EXPR, and returns that new string. Example:

$rec = join(':", $login,$passwd,$uid,$gid,$gcos,$home,$shell);

See split.

-given a list of strings, you can glue them together with a given string using join

($x,%y,$2,%s) = (“baby”,”is”,”crying”,” “);

join(“ “,$x,%y,%2);
jOin($S:$X:$Y:$Z);

$phrase
$phrase

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Concatenating with join

-join takes a list as an argument
- first element is the glue
-all other elements are the things to be glued

($X:$y,$2,$5) = (“baby”,”iS”,”crying”,” «);

$phrase = join(“ “,$x,$y,$z,”-”,”make”,”it”,”stop”); baby is crying - make is stop

$phrase = join(“ “,1,”+”,1,”=“,2); 1+1=2

-we’re drowning in double quotes here
-we’re creating a list of strings and need to delimit each string with “ “or qq()

(“babies”,”cry”,”a”,”1lot”); # noisy syntax
(babies cry a lot); # ERROR - barewords

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r;a_'e' BICINFORMATICS

Perl Workshop

=" GENOME
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Word List Operator qw()

-qw(STRING) splits the STRING into words along whitespace characters and
evaluates to a list of these words

$x = “camels”;
$y = “Spit”;
$z = “far”;

. or

($x,%y,$z) = qu(camels spit far);

*no quotes are necessary

-qw() does not interpolate

$num = 3;
($w,$x,%y,%$z) = qu(Snum camels spit far);
print “$w $x $y $z”; $num camels spit far

5/20/2008

1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r;a_'e' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Use qw() for Concise Assignment

-assigning values to multiple variables on one line is a good idea
‘terse
- easy to read
- even better if the variables are semantically related

($w,$x,%y,$z) = qw(blue 1 10$10 5.5); $y — 10%$10

» -we haven’t seen lists formally yet, but we are using them here
-a list is an ordered set of things (e.g. the soup)
“an array is a variable which holds a list (e.g. the can)
- the distinction is important because we can use lists without creating array variables

evaluates to a list « qw(blue 1 10%$10 5.5);

($w, $x,%y,%$z) <« expects a list

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Extracting Parts of a String

-substr is both an interesting and useful function
- it demonstrates Perl’s flexibility because it can be used as an I-value
- [-value — you can assign the output of substr values
- substr takes 2-4 arguments and behaves differently in each case

-strings are o-indexed —first character in the string is indexed by o (zero)

$string = “soggy vegetables in the crisper”;

NERRRRARRARARRRRRRA R
+’ve index-—>0123456789012345678901234567890
1098765432109876543210987654321«~ -’ve index

-substr(STRING,OFFSET) returns the part of the STRING starting at OFFSET

$substring
$substring
$substring
$substring

substr($string,6); soggy vegetables in the crisper
substr($string,0); soggy vegetables in the crisper
substr($string,-1); soggy vegetables in the crisper
substr($string,-7); soggy vegetables in the crisper

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

rag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl CS‘CE I E NTC RESE

Extracting Parts of a String

-substr(STRING,OFFSET,LEN) extracts LEN characters from the string, starting at
OFFSET

$string = “soggy vegetables in the crisper”;

LECEEEEEEEREEEEEE LT
+’ve index—0123456789012345678901234567890

1098765432109876543210987654321«~ -’ve index

$substring = substr($string,6,10); soggy vegetables in the crisper
$substring = substr($string,6,100); soggy vegetables in the crisper
$substring = substr($string,-3); soggy vegetables in the crisper
$substring = substr($string,-3,1); soggy vegetables in the crisper
$substring = substr($string,-3,2); soggy vegetables in the crisper
$substring = substr($string,-3,3); soggy vegetables in the crisper
$substring = substr($string,6,5); soggy vegetables in the crisper
} $substring = substr($string,6,-5); soggy vegetables in the crisper
$substring = substr($string,1,-1); soggy vegetables in the crisper

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Determining the Length of a String

-length(STRING) returns the number of characters in the string
-this includes any special characters like newline
- escaped characters like \$ count for +1

$string = “soggy vegetables in the crisper”;

LECEEEEEEEREEEEEE LT
+’ve index—0123456789012345678901234567890

1098765432109876543210987654321«~ -’ve index

$len = length($string); 31

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

' BIOINFORMATICS
r@? Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = = CS‘CE I E NTC RESE

Replacing Parts of a String

-substr() returns a part of a string

$substring = substr($string,0,5); soggy vegetables in the crisper

-substr() is also used to replace parts of a string

substr($string,0,5) = “very tasty”; very tasty vegetables in the crisper

-substr(STRING,OFFSET,LEN) = VALUE replaces the characters that would normally
be returned by substr(STRING,OFFSET,LEN) with VALUE

 VALUE can be shorter or longer than LEN —the string shrinks as required

“no”; no vegetables in the crisper
“tasty”; tasty vegetables in the crisper

substr($string,0,5)
substr($string,0,5)

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

rag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl CS‘CE I E NTC RESE

More on substr()

-instead of assigning a value to substr(), use the replacement string as 4th arg

substr($string,0,5) = “no”; no vegetables in the crisper
substr($string,0,5,”no”); no vegetables in the crisper
} $prev = substr($string,0,5,”no”); no vegetables in the crisper

$prev = “soggy”

-the 4 arg version of substr() returns the string that was replaced

$x
$y

“i have no food in my fridge”;
substr($x,0,length($x),”take out!”);

$x —> ?
by > ?

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

raa' BICINFORMATICS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Changing Case

-there are four basic case operators in Perl
- lc—convert all characters to lower case
uc —convert all characters to upper case
- Icfirst — convert first character to lower case
- ucfirst — convert first character to upper case

$x = “federal case”;

$y = uc $x; FEDERAL CASE
$y = ucfirst $x; Federal case
$y = lcfirst uc $x TEDERAL CASE

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

rag BIOINFORMATICS
Lol Perl Workshop | = L G EN 0 M E
1.0.1.8 = Introduction to Perl CS‘CE I E NTC RESE

Converting Case Inline

» -convert case inline with \U \L \u \I
“\L~Ic \U ~ uc
“\I ~ Icfirst \u ~ ucfirst
\E terminates effect of \U \L\u \Il

$x = “\Ufederal case”; FEDERAL CASE
$x = “\Ufederal\E case”; FEDERAL case
$x = “\ufederal \ucase”; Federal Case
$y = qq(\U$error\E $message);

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Regular Expressions

-a regular expression is a string that describes or matches a set of strings
according to syntax rules

-Perl’s match operatoris m/ / (c.f.qq/ / orq/ /)
the m is frequently dropped, and / / is used

-to bind a regular expression to a string =~ is used
-we will later see that m/ / may be used without accompanying =~

$string =~ m/REGEX/ $string =~ /REGEX/

-you must think of =~ as a binary operator, like + or -, which returns a value

see this think this

$string =~ m/REGEX/ — =~($string,REGEX)

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

 BIOINFORMATICS
r@? Perl Workshop

=" GENOME
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Regular Expressions

-regular expressions are made up of
- characters — literals like the letter “a” or number “1”

-metacharacters — special characters that have complex meaning
- character classes — a single character that can match a variety of characters

- modifiers — determine plurality (how many) characters can be matched (e.g. one, more than one)
- and others

-we’ll start slow and build up a basic vocabulary of regular expressions

-commonly the following paradigm is seen with regular expressions

if ($string =~ /REGEX/) {

do this if REGEX matches the $string
} else {

do this, otherwise

}

-remember that =~ is a binary operator — it will return true if a match is successful

5/20/2008

1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

' BIOINFORMATICS

M Perl Workshop

e GENOME
1.0.1.8 = Introduction to Perl - FE R CS‘CEIENTCRESE

Regular Expressions

-the most basic regular expression is one which contains the string you want to
match, as literals

$string = “Hello world”;
if ($string =~ /Hello/) {

print “string matched”; < a match is made in this case
} else {

print “no match”;

}

-regular expressions are case sensitive, unless / /i is used
*iis one of many flags that control how the REGEX is applied

$string = “Hello world”;
if ($string =~ /hello/i) {

print “string matched”; < a match is made in this case
} else {

print “no match”;

}

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Regular Expressions — Character Classes

-two commonly used character classes are . and [|
. means “any character”
- [] means “any of these characters”, e.g. [abc] will match either a or b or ¢, not ab or abc

-when used in isolation these classes match a single character in your string

$string = “hello world”;
match? matched by class

$string =~ /hello/ YES

$string =~ /Hello/i YES

$string =~ /hell./ YES 0
$string =~ /hell[abc]/ NO

$string =~ /hell[aeiou]/ YES 0
$string =~ /hel/ YES

$string =~ /hel[lo]/ YES 1
$string =~ /hel[lo]o/ YES 1
$string =~ /he[ll]o/ NO

-[] works with a range
’ [a—z], [C_e]’ [0_9]

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

' BIOINFORMATICS

M Perl Workshop

e GENOME
1.0.1.8 = Introduction to Perl - FE R CS‘CEIENTCRESE

Three Ubiquitous Character Classes

‘\d —any digit
- equivalent to [0123456789] or [0-9]

‘\w —any alphanumeric character or _
- equivalent to [a-zA-Zo-9]

\s —any whitespace

regex matches if string contains...

/\d\d\d/ three digits in succession

/1\d2/ 1 followed by any digit followed by 2

/\d\s\d/ a digit followed by a whitespace followed by a digit

/[aeiou].[aeiou]/ a lowercase vowel followed by any character followed by lowercase vowel
/[aeiou][1-5].B/i a vowel followed by any digit in the range 1-5 followed by any character
followed by B or b (case insensitive match)

$string = “hello”
$string =~ /[hello]/ — ?

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r;a_'e' BICINFORMATICS

Perl Workshop

=" GENOME
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Splitting a String

-splitis used to create a list from a string, by splitting it along a boundary
- reverse of join, which takes a list and glues elements together using a delimiter

join gw(a b c) > “ab c”
split “ab c” — qw(a b c)

-split takes a regular expression to act as the boundary
- split(/REGEX/,$string)

$string = “once upon a camel”;
($a,$b,$c,$d) = split(/\s/,$string) # split along a single white space
$string = “1-2-3-4”;

($a,$b,$c,$d) = split(/-/,$string) # split along hyphen — (1,2,3,4)

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Splitting Along Spaces

-because whitespace (tab, space) is such a common delimiter, split can be used
with “ “ as a boundary to mean any (positive) amount of whitespace

$string = “a b ¢ d”

split(“ “,$string) — quw(a b c d)

-note that split(/ /,5string) would split between single spaces

$string = “a b ¢ d”
Spli_t(/ /,$String) RN “a”,”b”,””,”C”,””,””,”d”

think this a_b [] c_[] []_d where [] is the empty string

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r;a_'e' BICINFORMATICS

Perl Workshop il B

1.0.1.8 =Introduction-to Perl

Splitting a String

-split is perfect for separating content from delimiters

$string = “user:password:flag”;
($user, $password, $flag) = split(“:”,$string); user password flag

$string = “2 5 100”
($x,%y,$z) = split(“ ”,$string); 2 5 100

$string = “aiba2c”;
($x,%y,%z) = split(/\d/,$string); abc

-split creates output (a list) suitable for input to join

$string = “a b < d e f g’
join(* “, split(“ “,$string)); abcdefg
join(“-%, split(“ “,$string)); a-b-c-d-e-f-g

join(* and “, split(“ “,$string)); aand b and c and d and e and f and g

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Chop and Chomp

-chomp is a boon and used everywhere
- it removes a trailing newline (actually the current record separator) from a string
-it’s safe to use because it doesn’t touch other characters
- it returns the total number of characters chomped

$string may have a newline at the end
chomp $string;

now string has no newline at the end

-chop removes the last character (whatever it may be) and returns it

$string = “camels”;
$x = chop $string;

$string — camel
$x — s

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

' BIOINFORMATICS

ra" | Perl W’orkshop _ . G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Short Script

$sequence = undef;
for (1..100) {
$x = rand();
if ($x < 0.25) {
$sequence = $sequence . q(a);
} elsif ($x < 0.5) {
$sequence = $sequence . q(c);
} elsif ($x < 0.75) {
$sequence = $sequence . q(g);
} else {
$sequence = $sequence . q(t);
}
}

print $sequence;

print “saw poly-A” if $sequence =~ / /;
print “saw aantt” if $sequence =~ /aa.tt/;
print join(“ + ”, split(“ata”,$sequence));

output
atcgccaagttggtgtagatatgaggcccgtccattgttcgtacttaacatgtctgtatagggatctgettatacttgtcggagataatacggtggegeg

saw aantt
atcgccaagttggtgtag + tgaggcccgtccattgttcgtacttaacatgtctgt + gggatctgett + cttgtcggag + + cggtggegeg

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex

ESE

i
=LL1=
E%E
(an] >
ﬂ v
c
c 2
o n &
5 ¢ E
s g 9O
_ > X 5
o £57
a £ 3"
oo o
(@] o U = wn
whd c = O >
2 <52 ©
c m.ﬂum.h P
d O W 4
v N 285% E o
T O 5= ® © S T =
o.ﬂ O-. e.
- n > <
ne N N
IS

X
)
Q0
(]
oz
©
=
©
<
)
>
—
T
w
Qo
<
=
-+
wn
1
—
5]
o
[e]
-+
-
ke
-+
O
=)
o
o
pudt
-+
m
1
o
()
o
-

Al

S A
R TR

W
N

a,., 3 AR
i
ot .r_f.p‘d_.. . Wy

B ,U,Ju..

Workshop
1.0.1.8 =Introduction-to Perl

erl

BICINFORMATICS

P
5/20/2008

s

f

