
5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 1

1.0.1.8 – Introduction to Perl

1.0.1.8.2
Introduction to Perl
Session 2

· manipulating strings
· basic regular expressions

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 2

1.0.1.8 – Introduction to Perl

administrative

· workshop slides are available at mkweb.bcgsc.ca/perlworkshop

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 3

1.0.1.8 – Introduction to Perl

Recap

· scalar variables are prefixed by $ sigil and can contain characters or numbers
· Perl interpolates variables in double quotes “ “ but not in single quotes ‘ ‘

· == and eq are the equality test operators for numbers and strings
· undef is a special keyword used to undefine a variable

double quote operator qq() single quote operator q()

$var = 1

qq(var) var q(var) var
qq(“var”) “var” q(“var”) “var”
qq($var) 1 q($var) $var
qq(${var}2) 12 q(${var}2) ${var}2
qq{\$var} $var q{\$var} \$var
qq/‘$var’/ ‘1’ q/‘$var’/ ‘$var’

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 4

1.0.1.8 – Introduction to Perl

String Manipulation

· manipulating strings in Perl is very easy
· large number of functions help you massage, cut, and glue strings together
· today we will explore how to

· concatenate strings
· replace parts of a string
· determine the length of a string
· change the case of a string

· I will also introduce regular expressions, which can be used to
· split a string on a boundary
· search a string for patterns

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 5

1.0.1.8 – Introduction to Perl

Concatenating Strings

· we’ve already seen one way to concatenate values of scalar variables
· concatenation operator .
· create a new variable and use interpolation to place strings in appropriate spot

$x = “baby”;
$y = “is”;
$z = “crying”;
$s = “ “;

$phrase = $x . “ “ . $y . “ “ . $z;
$phrase = $x . $s . $y . $s . $z;
$phrase = qq($x $y $z);
$phrase = qq($xsysz);

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 6

1.0.1.8 – Introduction to Perl

Concatenating with join

· use perldoc –f FUNCTION to learn about a built-in Perl function

· given a list of strings, you can glue them together with a given string using join

> perldoc -f join

join EXPR,LIST

Joins the separate strings of LIST into a single string with fields
separated by the value of EXPR, and returns that new string. Example:

$rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

See split.

($x,$y,$z,$s) = (“baby”,”is”,”crying”,” “);

$phrase = join(“ “,$x,$y,$z);
$phrase = join($s,$x,$y,$z);

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 7

1.0.1.8 – Introduction to Perl

Concatenating with join

· join takes a list as an argument
· first element is the glue
· all other elements are the things to be glued

· we’re drowning in double quotes here
· we’re creating a list of strings and need to delimit each string with “ “ or qq()

($x,$y,$z,$s) = (“baby”,”is”,”crying”,” “);

$phrase = join(“ “,$x,$y,$z,”-”,”make”,”it”,”stop”); baby is crying - make is stop

$phrase = join(“ “,1,”+”,1,”=“,2); 1 + 1 = 2

(“babies”,”cry”,”a”,”lot”); # noisy syntax
(babies cry a lot); # ERROR - barewords

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 8

1.0.1.8 – Introduction to Perl

Word List Operator qw()

· qw(STRING) splits the STRING into words along whitespace characters and
evaluates to a list of these words

· no quotes are necessary
· qw() does not interpolate

$x = “camels”;
$y = “spit”;
$z = “far”;

... or

($x,$y,$z) = qw(camels spit far);

$num = 3;
($w,$x,$y,$z) = qw($num camels spit far);
print “$w $x $y $z”; $num camels spit far

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 9

1.0.1.8 – Introduction to Perl

Use qw() for Concise Assignment

· assigning values to multiple variables on one line is a good idea
· terse
· easy to read
· even better if the variables are semantically related

· we haven’t seen lists formally yet, but we are using them here
· a list is an ordered set of things (e.g. the soup)
· an array is a variable which holds a list (e.g. the can)
· the distinction is important because we can use lists without creating array variables

($w,$x,$y,$z) = qw(blue 1 10$10 5.5); $y → 10$10

evaluates to a list ← qw(blue 1 10$10 5.5);

($w,$x,$y,$z) ← expects a list

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 10

1.0.1.8 – Introduction to Perl

Extracting Parts of a String

· substr is both an interesting and useful function
· it demonstrates Perl’s flexibility because it can be used as an l-value
· l-value → you can assign the output of substr values
· substr takes 2-4 arguments and behaves differently in each case

· strings are 0-indexed – first character in the string is indexed by 0 (zero)

· substr(STRING,OFFSET) returns the part of the STRING starting at OFFSET

$string = “soggy vegetables in the crisper”;
|||||||||||||||||||||||||||||||

+’ve index→0123456789012345678901234567890
1098765432109876543210987654321← -’ve index

$substring = substr($string,6); soggy vegetables in the crisper
$substring = substr($string,0); soggy vegetables in the crisper
$substring = substr($string,-1); soggy vegetables in the crisper
$substring = substr($string,-7); soggy vegetables in the crisper

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 11

1.0.1.8 – Introduction to Perl

Extracting Parts of a String

· substr(STRING,OFFSET,LEN) extracts LEN characters from the string, starting at
OFFSET

$substring = substr($string,6,10); soggy vegetables in the crisper
$substring = substr($string,6,100); soggy vegetables in the crisper
$substring = substr($string,-3); soggy vegetables in the crisper
$substring = substr($string,-3,1); soggy vegetables in the crisper
$substring = substr($string,-3,2); soggy vegetables in the crisper
$substring = substr($string,-3,3); soggy vegetables in the crisper

$substring = substr($string,6,5); soggy vegetables in the crisper
$substring = substr($string,6,-5); soggy vegetables in the crisper
$substring = substr($string,1,-1); soggy vegetables in the crisper

$string = “soggy vegetables in the crisper”;
|||||||||||||||||||||||||||||||

+’ve index→0123456789012345678901234567890
1098765432109876543210987654321← -’ve index

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 12

1.0.1.8 – Introduction to Perl

Determining the Length of a String

· length(STRING) returns the number of characters in the string
· this includes any special characters like newline
· escaped characters like \$ count for +1

$string = “soggy vegetables in the crisper”;
|||||||||||||||||||||||||||||||

+’ve index→0123456789012345678901234567890
1098765432109876543210987654321← -’ve index

$len = length($string); 31

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 13

1.0.1.8 – Introduction to Perl

Replacing Parts of a String

· substr() returns a part of a string

· substr() is also used to replace parts of a string

· substr(STRING,OFFSET,LEN) = VALUE replaces the characters that would normally
be returned by substr(STRING,OFFSET,LEN) with VALUE
· VALUE can be shorter or longer than LEN – the string shrinks as required

$substring = substr($string,0,5); soggy vegetables in the crisper

substr($string,0,5) = “very tasty”; very tasty vegetables in the crisper

substr($string,0,5) = “no”; no vegetables in the crisper
substr($string,0,5) = “tasty”; tasty vegetables in the crisper

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 14

1.0.1.8 – Introduction to Perl

More on substr()

· instead of assigning a value to substr(), use the replacement string as 4th arg

· the 4 arg version of substr() returns the string that was replaced

substr($string,0,5) = “no”; no vegetables in the crisper
substr($string,0,5,”no”); no vegetables in the crisper

$prev = substr($string,0,5,”no”); no vegetables in the crisper
$prev = “soggy”

$x = “i have no food in my fridge”;
$y = substr($x,0,length($x),”take out!”);

$x → ?
$y → ?

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 15

1.0.1.8 – Introduction to Perl

Changing Case

· there are four basic case operators in Perl
· lc – convert all characters to lower case
· uc – convert all characters to upper case
· lcfirst – convert first character to lower case
· ucfirst – convert first character to upper case

$x = “federal case”;

$y = uc $x; FEDERAL CASE
$y = ucfirst $x; Federal case
$y = lcfirst uc $x fEDERAL CASE

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 16

1.0.1.8 – Introduction to Perl

Converting Case Inline

· convert case inline with \U \L \u \l
· \L ~ lc \U ~ uc
· \l ~ lcfirst \u ~ ucfirst
· \E terminates effect of \U \L \u \l

$x = “\Ufederal case”; FEDERAL CASE
$x = “\Ufederal\E case”; FEDERAL case
$x = “\ufederal \ucase”; Federal Case

$y = qq(\U$error\E $message);

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 17

1.0.1.8 – Introduction to Perl

Regular Expressions

· a regular expression is a string that describes or matches a set of strings
according to syntax rules

· Perl’s match operator is m/ / (c.f. qq/ / or q/ /)
· the m is frequently dropped, and / / is used

· to bind a regular expression to a string =~ is used
· we will later see that m/ / may be used without accompanying =~

· you must think of =~ as a binary operator, like + or -, which returns a value

$string =~ m/REGEX/ $string =~ /REGEX/

see this think this

$string =~ m/REGEX/ → =~($string,REGEX)

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 18

1.0.1.8 – Introduction to Perl

Regular Expressions

· regular expressions are made up of
· characters – literals like the letter “a” or number “1”
· metacharacters – special characters that have complex meaning

· character classes – a single character that can match a variety of characters
· modifiers – determine plurality (how many) characters can be matched (e.g. one, more than one)
· and others

· we’ll start slow and build up a basic vocabulary of regular expressions
· commonly the following paradigm is seen with regular expressions

· remember that =~ is a binary operator – it will return true if a match is successful

if ($string =~ /REGEX/) {
do this if REGEX matches the $string

} else {
do this, otherwise

}

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 19

1.0.1.8 – Introduction to Perl

Regular Expressions

· the most basic regular expression is one which contains the string you want to
match, as literals

· regular expressions are case sensitive, unless / /i is used
· i is one of many flags that control how the REGEX is applied

$string = “Hello world”;
if ($string =~ /Hello/) {
print “string matched”; ← a match is made in this case

} else {
print “no match”;

}

$string = “Hello world”;
if ($string =~ /hello/i) {
print “string matched”; ← a match is made in this case

} else {
print “no match”;

}

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 20

1.0.1.8 – Introduction to Perl

Regular Expressions – Character Classes

· two commonly used character classes are . and []
· . means “any character”
· [] means “any of these characters”, e.g. [abc] will match either a or b or c, not ab or abc

· when used in isolation these classes match a single character in your string

· [] works with a range
· [a-z], [c-e], [0-9]

$string = “hello world”;
match? matched by class

$string =~ /hello/ YES
$string =~ /HeLLo/i YES
$string =~ /hell./ YES o
$string =~ /hell[abc]/ NO
$string =~ /hell[aeiou]/ YES o
$string =~ /hel/ YES
$string =~ /hel[lo]/ YES l
$string =~ /hel[lo]o/ YES l
$string =~ /he[ll]o/ NO

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 21

1.0.1.8 – Introduction to Perl

Three Ubiquitous Character Classes

· \d – any digit
· equivalent to [0123456789] or [0-9]

· \w – any alphanumeric character or _
· equivalent to [a-zA-Z0-9_]

· \s – any whitespace

regex matches if string contains...

/\d\d\d/ three digits in succession
/1\d2/ 1 followed by any digit followed by 2
/\d\s\d/ a digit followed by a whitespace followed by a digit
/[aeiou].[aeiou]/ a lowercase vowel followed by any character followed by lowercase vowel
/[aeiou][1-5].B/i a vowel followed by any digit in the range 1-5 followed by any character

followed by B or b (case insensitive match)

$string = “hello”
$string =~ /[hello]/ → ?

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 22

1.0.1.8 – Introduction to Perl

Splitting a String

· split is used to create a list from a string, by splitting it along a boundary
· reverse of join, which takes a list and glues elements together using a delimiter

· split takes a regular expression to act as the boundary
· split(/REGEX/,$string)

join qw(a b c) → “a b c”
split “a b c” → qw(a b c)

$string = “once upon a camel”;

($a,$b,$c,$d) = split(/\s/,$string) # split along a single white space

$string = “1-2-3-4”;

($a,$b,$c,$d) = split(/-/,$string) # split along hyphen → (1,2,3,4)

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 23

1.0.1.8 – Introduction to Perl

Splitting Along Spaces

· because whitespace (tab, space) is such a common delimiter, split can be used
with “ “ as a boundary to mean any (positive) amount of whitespace

· note that split(/ /,$string) would split between single spaces

$string = “a b c d”

split(“ “,$string) → qw(a b c d)

$string = “a b c d”

split(/ /,$string) → “a”,”b”,””,”c”,””,””,”d”

think this a_b_[]_c_[]_[]_d where [] is the empty string

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 24

1.0.1.8 – Introduction to Perl

Splitting a String

· split is perfect for separating content from delimiters

· split creates output (a list) suitable for input to join

$string = “user:password:flag”;
($user,$password,$flag) = split(“:”,$string); user password flag

$string = “2_5_100”
($x,$y,$z) = split(“_”,$string); 2 5 100

$string = “a1b2c”;
($x,$y,$z) = split(/\d/,$string); a b c

$string = “a b c d e f g”;
join(“ “, split(“ “,$string)); a b c d e f g
join(“-“, split(“ “,$string)); a-b-c-d-e-f-g
join(“ and “, split(“ “,$string)); a and b and c and d and e and f and g

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 25

1.0.1.8 – Introduction to Perl

Chop and Chomp

· chomp is a boon and used everywhere
· it removes a trailing newline (actually the current record separator) from a string
· it’s safe to use because it doesn’t touch other characters
· it returns the total number of characters chomped

· chop removes the last character (whatever it may be) and returns it

$string may have a newline at the end

chomp $string;

now string has no newline at the end

$string = “camels”;
$x = chop $string;

$string → camel
$x → s

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 26

1.0.1.8 – Introduction to Perl

Short Script

$sequence = undef;
for (1..100) {
$x = rand();
if ($x < 0.25) {
$sequence = $sequence . q(a);

} elsif ($x < 0.5) {
$sequence = $sequence . q(c);

} elsif ($x < 0.75) {
$sequence = $sequence . q(g);

} else {
$sequence = $sequence . q(t);

}
}

print $sequence;
print “saw poly-A” if $sequence =~ /aaaa/;
print “saw aantt” if $sequence =~ /aa.tt/;
print join(“ + ”, split(“ata”,$sequence));

output

atcgccaagttggtgtagatatgaggcccgtccattgttcgtacttaacatgtctgtatagggatctgcttatacttgtcggagataatacggtggcgcg
saw aantt
atcgccaagttggtgtag + tgaggcccgtccattgttcgtacttaacatgtctgt + gggatctgctt + cttgtcggag + + cggtggcgcg

5/20/2008 1.0.1.8.2 - Introduction to Perl - Strings, Truth and Regex 27

1.0.1.8 – Introduction to Perl

1.0.8.1.2
Introduction to Perl
Session 2

· you now know
· all about string manipulation
· a little about regular expressions
· use of split, join, and chomp

· next time
· lists and arrays

