
5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 1

1.0.1.8 – Introduction to Perl

1.0.1.8.1
Introduction to Perl
Session 1

· what is Perl?
· history of Perl
· writing and running a Perl script
· dealing with variables

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 2

1.0.1.8 – Introduction to Perl

what is Perl?
· Perl is a programming language (duh)
· Perl has a philosophy of pragmatism, creativity and fun

· it lets you get the job done•
· it makes easy jobs easy and hard jobs possible
· it makes it easy to manipulate numbers, text, files, strings, directories and processes
· it’s free, available on nearly every platform
· there’s more than one way to do it•
· it’s simple to learn but deep enough to continue to stimulate for years to come
· it’s highly idiomatic – just like a language
· it works on the principle of least surprise•
· it’s remarkably extensible (Comprehensive Perl Archive Network)

· Perl is extremely rich – just like a language
· you can pick up “conversational” Perl in a few weeks
· you can write Perl poetry in a few months
· you will speak Perl slang shortly after that

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 3

1.0.1.8 – Introduction to Perl

history of Perl

· 1987 Perl 1.0 is released by Larry Wall
· practical extraction and report language
· pract

· 1988 Perl 2.0 is released
· sort operator added, among other things

· 1989 Perl 3.0 is released
· you can now pass things by reference, among other things

· 1991 Perl 4.0 is released
· I'm reminded of the day my daughter came in, looked over my shoulder at some Perl 4

code, and said, "What is that, swearing?" Larry Wall

· 1995 Perl 5.0 is released
· POD is introduced, among other things

· Perl 6.0 will be released when it’s ready – current version 5.10.0 (13-may-08)
· named parameters will be added, among other things

http://history.perl.org/PerlTimeline.html

http://dev.perl.org/perl6/faq.html

Larry Wall

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 4

1.0.1.8 – Introduction to Perl

Myths of Perl

· Perl looks like line noise
· Perl is hard because …

· it has regexps
· it has references

· Perl is just for UNIX
· Perl is just for one-liners – you can’t build “real” programs with it
· Perl is just for the web
· Perl is too slow
· Perl is insecure

http://www.perl.com/pub/a/2000/01/10PerlMyths.html

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 5

1.0.1.8 – Introduction to Perl

a few notes before we begin

· Perl is a practical alternative to bashing your head against the wall
· anyone can learn Perl and make good use of it
· for every 1 hour learning Perl you will save 1 month of work
· train your eyes to quickly spot the difference between

· whatever we are doing, thinking whether there is another way to do it
· Perl gives you a lot of freedom – control yourself!
· we won’t write “Hello World” in Perl, but you can see it in Perl and many other

languages at http://www.freenetpages.co.uk/hp/alan.gauld/complang.htm

{} [] ()

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 6

1.0.1.8 – Introduction to Perl

running your first Perl script

· Perl is interpreted
· you don’t need to compile your scripts

· a variety of Perl binaries exist on our system
· /usr/local/bin/perl (5.005)
· /usr/local/bin/perl56 (5.6.1)
· /usr/local/bin/perl58 (5.8.3)
· /home/martink/perl/current/bin/perl (5.8.7)

· to check version “perl –V | head -1”
Summary of my perl5 (revision 5.0 version 8 subversion 3) configuration

· executing a Perl script is easy – just pass the file to the Perl binary
> cat script.pl
print “Camels spit up to 10 meters, except in the US where they spit up to 33 feet.\n”;

> /usr/bin/perl script.pl
Camels spit up to 10 meters, except in the US where they spit up to 33 feet.

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 7

1.0.1.8 – Introduction to Perl

#! notation

· you can specify the Perl binary within the script
· this is the preferred way of doing it

· you can pass flags to the Perl binary, if needed
· we’ll cover useful flags later

#!/usr/bin/perl

print “I saw a smoking camel.\n”;

http://sunsite.uakom.sk/sunworldonline/swol-09-1999/swol-09-unix101.html

#!/usr/bin/perl -w

print “I saw a smoking camel.\n”;

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 8

1.0.1.8 – Introduction to Perl

setting executable flag

· your shell will automatically execute “binaries” if their executable flag is set

· iterative script writing process
· create/edit your script with your favourite text editor
· set executable flag on with chmod (once)
· run/debug script

> ls
-rw-r--r-- 1 martink users 112 2006-04-04 12:58 script.pl

> chmod +x script.pl
-rwxr-xr-x 1 martink users 112 2006-04-04 12:58 script.pl

> which script.pl
./script.pl

> script.pl
Camels spit up to 10 meters, except in the US where they spit up to 33 feet.

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 9

1.0.1.8 – Introduction to Perl

choice of perl binaries

· on any large network, you will find many versions of the Perl interpreter (perl)
· /usr/bin/perl – installed with the OS on the network node
· /usr/local/bin/perl – installed for system-wide use, long long ago
· /usr/local/bin/perlxxx – variety of links to other perl versions

· if you would like to play around
· /usr/bin/perl

· if you are just starting and have no legacy dependancies
· /usr/local/bin/perl58
· additional modules may have been installed by systems

· if you need perl 5.6 for legacy use
· /usr/local/bin/perl56

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 10

1.0.1.8 – Introduction to Perl

checking for version and binary compile settings

> /home/martink/bin/perl –V
Summary of my perl5 (revision 5 version 8 subversion 7) configuration:
Platform:

osname=linux, osvers=2.4.20-64gb-smp, archname=i686-linux-ld
uname='linux xhost02 2.4.20-64gb-smp #1 smp wed aug 6 18:30:02 utc 2003 i686 unknown unknown gnulinux '
config_args=''
<...>

Compiler:
<...>
intsize=4, longsize=4, ptrsize=4, doublesize=8, byteorder=1234
d_longlong=define, longlongsize=8, d_longdbl=define, longdblsize=12
ivtype='long', ivsize=4, nvtype='long double', nvsize=12, Off_t='off_t', lseeksize=8
alignbytes=4, prototype=define

Linker and Libraries:
<...>
Dynamic Linking:
<...>

Characteristics of this binary (from libperl):
Compile-time options: USE_LONG_DOUBLE USE_LARGE_FILES
Built under linux
Compiled at Sep 20 2005 16:19:46
@INC:

/home/martink/perl/5.8.7/lib/5.8.7/i686-linux-ld
/home/martink/perl/5.8.7/lib/5.8.7
/home/martink/perl/5.8.7/lib/site_perl/5.8.7/i686-linux-ld
/home/martink/perl/5.8.7/lib/site_perl/5.8.7
/home/martink/perl/5.8.7/lib/site_perl
.

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 11

1.0.1.8 – Introduction to Perl

Perl variables

· Perl does not require that you specify what you want to store in a variable
· this is a contrast to typed languages like C or Java
· this is a boon and a bane – but you are in control, not the language

· the same variable, at different times, can hold
· a number
· a string
· a letter
· binary data

· Perl differentiates variables on the basis of plurality
· a scalar variable holds a single value (a number, a string, a letter)
· an array variable holds multiple values (a list of numbers, a list of strings)

· a hash is a special type of array variable in which elements are indexed by strings, not integers

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 12

1.0.1.8 – Introduction to Perl

Perl variables

· Perl variables are preceded by a character that identifies the plurality of the
variable

· you cannot access the value in a variable without using the appropriate prefix
· $animal, @animal and %animal are different variables

· they are completely independent
· they can hold different values

animal

$animal @animal %animal
scalar array hash

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 13

1.0.1.8 – Introduction to Perl

Perl variables

· you can name your variable whatever you want (mostly)
· no special characters like $@% in variable names (obviously)
· cannot begin with a number
· no spaces

· Perl is case sensitive
· $animal $Animal and $ANIMAL are all different variables

good bad

$animal
$animal123

$123animal
$big_animal

$big animal
$BigAnimal

$big;animal

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 14

1.0.1.8 – Introduction to Perl

Variable Assignment

· to give a variable a value, use =

· use undef to force a variable to become undefined

$x = 1;
$y = 2;
$z = 3;

$x = $y = 0; # set both variables to zero

($x,$y,$z) = (1,2,3); # we’ll see this later

$x = 1;
$x = undef; # explicitly undefines $y

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 15

1.0.1.8 – Introduction to Perl

Scalars

· scalars are identified by $ and can hold only one value at a time
· scalar is like a cup – if you want coffee, you need to remove the tea
· arrays are more like icecube trays – you can have many icecubes

#!/usr/bin/perl

a comment
$animal = “Camel”;
print $animal,”\n”;
$animal = “12 Camels”;
print $animal,”\n”;
$animal = 12; # an inline comment
print $animal,”\n”;

Camel
12 Camels
12

2. each line must be terminated by a semicolon

3. \n codes for new line

1. always specify where your perl interpreter is

4. # indicates the rest of the line is a comment

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 16

1.0.1.8 – Introduction to Perl

Basic Operators

· Perl has a lot of different operators – actions that you can apply to variables
· unary/binary/trinary – operate on one/two/three scalars at a time

· Perl will try to do the right thing when you are operating on scalars
· try mixing numbers and strings in an operation to see what happens

$w = “camel”;
$x = 2;
$y = 3;

$z = $x + $y; # 5
$z = $x * $y; # 6
$z = $x / $y; # 0.66666

$z = $w + $x; # 2
$z = $w * $x; # 0

$z = $w . $x; # camel2
$z = $x . $y; # 23
$z = $w + $w; # 0

+ - * / basic arithmetic
2+3 = 5

** exponentiation
2**3 = 8

. concatenation (period)
2.3 = 23

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 17

1.0.1.8 – Introduction to Perl

Functions

· functions are things that Perl knows how to do out of the box
· sqrt()
· sin()
· rand() – I will use rand() for a lot of examples

· you can write your own functions, of course

$x = rand(); # x is a random number uniformly sampled from [0,1)

print $x,”\n”;
print sqrt($x),”\n”;
print $x**$x,”\n”;

0.0730786472558975
0.27033062581938
0.825975844619357

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 18

1.0.1.8 – Introduction to Perl

Flow Control

· Perl has a wide variety of branching operators
· looping
· condition checking

· let’s learn the if conditional so we can write simple scripts

· conditional operators
· == tests for equality between numbers
· eq tests for equality between strings

$x = rand();

if ($x <= 0.5) {
print $x . “ is small\n”;

} else {
print $x . “ is large\n”;

}

if (CONDITION) {
CODE

} else {
CODE

}

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 19

1.0.1.8 – Introduction to Perl

Many Perlisms Ahead

· Perl is about doing the same thing in a variety of ways
· be creative
· be stylish
· be careful!

· start slowly and increase flair as necessary
· make sure that, above else, you can understand your code!

if ($x <= 0.5) {
print $x,”\n”;

}

if ($x <= 0.5) { print $x,”\n”; }

print $x,”\n” if $x <= 0.5; CODE if CONDITION;

if (CONDITION) { CODE }

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 20

1.0.1.8 – Introduction to Perl

Interpolation

· interpolation can be a great source of frustration
· Perl tries to make it as painless as possible
· how a language interpolates variables is how a language decides how to evaluate

strings, which may contain variables

· rule #1 – Perl interpolates variable values in double quotes

$x = “Camel”;
$y = “I have a pet $x”;
print $y;

I have a pet Camel

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 21

1.0.1.8 – Introduction to Perl

Interpolation – double quotes

· you can safely tuck your variables inside double quote and their values will be
evaluated and inserted into the string

· variables will be interpolated, but no operations will be performed

$x = “Camel”;

$y1 = “I have a pet $x”;
$y2 = “I have a pet “ . “$x”;
$y3 = “I have a pet “ . $x;

$x = “Camel”;
$y = 2;
$z = 3;

$w = “I have a pet $x who told me $y times $z is $y*$z”;

I have a pet Camel who told me 2 times 3 is 2*3

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 22

1.0.1.8 – Introduction to Perl

Interpolation – double quotes

· if you want results of operations included in strings
· concatenate them in
· use temporary variables

$x = “Camel”;
$y = 2;
$z = 3;
$t = $y * $z;

$w1 = “I have a pet $x who told me $y times $z is $t”;
$w2 = “I have a pet $x who told me $y times $z is “ . $t;
$w2 = “I have a pet $x who told me $y times $z is “ . $y * $z;

I have a pet Camel who told me 2 times 3 is 6

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 23

1.0.1.8 – Introduction to Perl

Interpolation – single quotes

· no interpolation happens if you use single quotes

· ‘$x’ is a string that contains the characters “$” and “x”, not the variable $x
· you may want to print the text “$x” and not the value of the scalar x

$x = “Camel”;
$y = 2;
$z = 3;
$t = $y * $z;

$w1 = ‘I have a pet $x who told me $y times $z is $t’;

I have a pet $x who told me $y times $z is $t

$s1 = ‘$x’;
$s3 = ‘$’ . ‘x’;
$s2 = “\$” . “x”; # since $ is a special character, it needs to be escaped in double quotes

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 24

1.0.1.8 – Introduction to Perl

Interpolation – an *ation of pain

· you’ll get used to Perl’s own interpolation mechanism, but at first it can be
frustrating

· you have just discovered the mysteries of Perl’s special variables
· special, as in hidden and confusing and impossible to remember
· don’t worry, we’ll get to these shortly

· for now, if you have words or numbers preceeded by $ or @ or % in your strings,
expect the unexpected!
· don’t worry, we’ll sort these things out eventually

$x = “If I join the espresso club, I will save $2 on every coffee!”;

If I join the espresso club, I will save on every coffee!

what’s going on? where’s your money?

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 25

1.0.1.8 – Introduction to Perl

Interpolation

· understanding and getting a handle on interpolation is important because you’ll
be wanting to print things out

· Perl offers assistance in interpolating your strings
· think of the quotes “ “ as an operator, not as a container for a string

· “ “ operates to replace all mention of variables with their values
· ‘ ‘ operates to ignore all mention of variables and treats the string as a literal

· instead of quotes, you can use quote and quote-like operators

$x = “camel”;
print “$x”; # camel
print qq(camel); # camel
print qq($x); # camel
print qq(“$x”); # “camel”

qq(STRING) is equivalent to “STRING“

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 26

1.0.1.8 – Introduction to Perl

Uses of qq()

· qq() helps you deal with strings which have quotes in them
· remember, the qq(and) are the parts of the operator.

$x = “My camel’s name is “Bob””;

print $x

Bareword found where operator expected at ./script.pl line 21, near ""My camel's name is "Bob"
(Missing operator before Bob?)

syntax error at ./script.pl line 21, near ""My camel's name is "Bob"
String found where operator expected at ./script.pl line 21, near "Bob"""
Execution of ./script.pl aborted due to compilation errors.

$x1 = “My camel’s name is \“Bob\””;
$x2 = qq{My camel’s name is “Bob”};

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 27

1.0.1.8 – Introduction to Perl

Flexibility of qq()

· remember how I said Perl is flexible and gives you control
· how about flexible delimiters? now that’s control!

· non alpha-numeric, non whitespace

· you get the idea
· there are other operators that have this flexibility
· pick a delimiter and stick with it

qq(My camel’s name is “Bob”);
qq{My camel’s name is “Bob”};
qq/My camel’s name is “Bob”/;
qq|My camel’s name is “Bob”|;
qq$My camel’s name is “Bob”$;
qq*My camel’s name is “Bob”*;
qq!My camel’s name is “Bob”!;

qq/My camel’s name is “Bob”. His answer to $x is spitting and his favourite char is (/;

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 28

1.0.1.8 – Introduction to Perl

qq() vs q()

· q() is equivalent to single quotes
· all the flexibility of qq() without the interpolation

· if you have strings with lots of special characters, qq() and q() are a boon

$x = 2;
q($x) # $x
qq($x) # 2

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 29

1.0.1.8 – Introduction to Perl

${VAR}

· consider the following problem
· you want to print out a variable and immediately another string after it

$x = 10;

print qq(Camels spit up to $xm); # bad – no variable $xm

print qq(Camels spit up to ${x}m); # good

print “Camels spit up to ${x}m”; # good

print “Camels spit up to $x”.”m”; # good but messy

print “Camels spit up to $x \bm”; # obfuscated

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 30

1.0.1.8 – Introduction to Perl

Interpolation Examples

· let’s apply some of the things we’ve seen

$x = “x”;
$X = “X”;

print q($x) . qq(is the string “$x”);
print q($X) . qq(is the string “$X”);

$x is the string “x”
$X is the string “X”

if ($x eq $X) {
print qq(\$x = $x and \$X = $X have the same contents);

} else {
print qq(\$x = $x and \$X = $X are different);

}

$x = x and $X = X are different

print qq(If I get a new camel, I will name him $x.$X.$x);

If I get a new camel, I will name him x.X.x

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 31

1.0.1.8 – Introduction to Perl

Contratulations – you have conquered your fears

· you can now understand the following Perl line noise – see it’s not that hard

$x = 1;

“$x.” 1.
$x.”.” 1.
qq($x).”.” 1.
qq(${x}.) 1.
qq($x.) 1.

q!{${x}}! {${x}}

“\xx.” $x1.

“x${x}x” x1x
“\x{x}x” $x1x

qq($x+${x}1+\$x) 1+11+$x

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables 32

1.0.1.8 – Introduction to Perl

1.0.8.1.1
Introduction to Perl
Session 1

· you now know
· all about scalars
· all about interpolation
· qq() and q()
· == and eq
· if conditional

· next time
· manipulating strings
· regular expression basics

