ESE

P
S]

Workshop
1.0.1.8 =Introduction-to Perl

BIOINFORMATICS
erl

l)

N

ion to Perl

Introduct
Session 1

ipt

- writing and running a Perl scr

- what is Perl?
- history of Perl

e

Mo L
_._pa/a“..,a.‘ A

)
SREh
e
W Jn.—/.
LA

- dealing with variables

w
0
e

©
=

T
>

1
-

U
[a W

[e]
-+

c
9
-+

O

>
o

o

—
-+
=

r;a_'e' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = =_ CS‘CEIENTCRESE

what is Perl?

-Perl is a programming language (duh)

-Perl has a philosophy of pragmatism, creativity and fun
- it lets you get the job done-
- it makes easy jobs easy and hard jobs possible
- it makes it easy to manipulate numbers, text, files, strings, directories and processes
-it’s free, available on nearly every platform
-there’s more than one way to do it-
-it’s simple to learn but deep enough to continue to stimulate for years to come
-it’s highly idiomatic —just like a language
-it works on the principle of least surprise-
-it’s remarkably extensible (Comprehensive Perl Archive Network)

-Perl is extremely rich — just like a language
- you can pick up “conversational” Perl in a few weeks
- you can write Perl poetry in a few months
-you will speak Perl slang shortly after that

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

rag BIOINFORMATICS
Lol Perl Workshop | = L G EN O M E
1.0.1.8 = Introduction to Perl = CSCE I E NTC RESE

history of Perl

1987 Perl 1.0 is released by Larry Wall
- practical extraction and report language
- pract

1988 Perl 2.0 is released
- sort operator added, among other things

1989 Perl 3.0 is released
*you can now pass things by reference, among other things

Larry Wall
1991 Perl 4.0 is released

I'm reminded of the day my daughter came in, looked over my shoulder at some Perl 4
code, and said, "What is that, swearing?" Larry Wall
1995 Perl 5.0 is released
- POD is introduced, among other things

-Perl 6.0 will be released when it’s ready — current version 5.10.0 (13-may-08)

*named parameters will be added, among other things
http://history.perl.org/PerlTimeline.html

http://dev.perl.org/perl6/faq.html

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

rag BIOINFORMATICS
Lol Perl Workshop =T G EN 0 M E
1.0.1.8 = Introduction to Perl CSCE I E NTC RESE

Myths of Perl

- Perl looks like line noise

- Perl is hard because ...
-it has regexps
- it has references

-Perl is just for UNIX

-Perl is just for one-liners — you can’t build “rea

I”

programs with it
-Perl is just for the web
-Perl is too slow

Perl is insecure

http://www.perl.com/pub/a/2000/01/10Per1Myths.html

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r;a_'e' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl __Ei : CS‘CEIENTCRESE

a few notes before we begin

-Perl is a practical alternative to bashing your head against the wall
-anyone can learn Perl and make good use of it
-for every 1 hour learning Perl you will save 1 month of work

-train your eyes to quickly spot the difference between

i+ 1 QO

-whatever we are doing, thinking whether there is another way to do it
-Perl gives you a lot of freedom — control yourself!

-we won’t write “Hello World” in Perl, but you can see it in Perl and many other
languages at http://www.freenetpages.co.uk/hp/alan.gauld/complang.htm

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

running your first Perl script

-Perl is interpreted
- you don’t need to compile your scripts

-a variety of Perl binaries exist on our system
- /usr/local/bin/perl (5.005)
- /usr/local/bin/perls6 (5.6.1)
- /usr/local/bin/perl58 (5.8.3)
- /home/martink/perl/current/bin/perl (5.8.7)

-to check version “perl -V | head -1”

Summary of my perl5 (revision 5.0 version 8 subversion 3) configuration

> cat script.pl
print “Camels spit up to 10 meters, except in the US where they spit up to 33 feet.\n”;

> /usr/bin/perl script.pl
Camels spit up to 10 meters, except in the US where they spit up to 33 feet.

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

#! notation

-you can specify the Perl binary within the script
- this is the preferred way of doing it

#!/usr/bin/perl

print “I saw a smoking camel.\n”;

-you can pass flags to the Perl binary, if needed
-we’ll cover useful flags later

#!/usxr/bin/perl -w

print “I saw a smoking camel.\n”;

http://sunsite.uakom.sk/sunworldonline/swol-09-1999/swol-09-unix101.html

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

setting executable flag

-your shell will automatically execute “binaries” if their executable flag is set

> 1s
-IW-T--T-- 1 martink users 112 2006-04-04 12:58 script.pl

> chmod +x script.pl
-TWXT-XT-X 1 martink users 112 2006-04-04 12:58 script.pl

> which script.pl
./script.pl

> script.pl
Camels spit up to 10 meters, except in the US where they spit up to 33 feet.

-iterative script writing process
- create/edit your script with your favourite text editor
- set executable flag on with chmod (once)
run/debug script

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

rag BICINFORMATICS

Per]l Workshop L& = GENOME
1.0.1.8 = Introduction to Perl = CSCE I E NTC RESE

choice of perl binaries

-on any large network, you will find many versions of the Perl interpreter (perl)
- /usr/bin/perl —installed with the OS on the network node
- /usr/local/bin/perl —installed for system-wide use, long long ago
- /usr/local/bin/perlxxx —variety of links to other perl versions

-if you would like to play around
- /usr/bin/perl

-if you are just starting and have no legacy dependancies
- /usr/local/bin/perl58
- additional modules may have been installed by systems

-if you need perl 5.6 for legacy use
+ /usr/local/bin/perl56

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

' BIOINFORMATICS

M Perl Workshop

1.0.1.8 =Introduction-toPerl

checking for version and binary compile settings

o

[

> /home/martink/bin/perl -V
Summary of my perl5 (revision 5 version 8 subversion 7) configuration:
Platform:
osname=linux, osvers=2.4.20-64gb-smp, archname=i686-linux-1d

config args=""
<ousd

Compiler:
<eusd
intsize=4, longsize=4, ptrsize=4, doublesize=8, byteorder=1234
d_longlong=define, longlongsize=8, d_longdbl=define, longdblsize=12
ivtype='long', ivsize=4, nvtype='long double', nvsize=12, Off_t='off t', lseeksize=8
alignbytes=4, prototype=define

Linker and Libraries:

<oudd

Dynamic Linking:

<oudd

Characteristics of this binary (from libperl):

Compile-time options: USE_LONG_DOUBLE USE_LARGE_FILES

Built under linux

Compiled at Sep 20 2005 16:19:46

@INC:
/home/martink/perl/5.8.7/1ib/5.8.7/1686-1inux-1d
/home/martink/perl/5.8.7/1ib/5.8.7
/home/martink/perl/5.8.7/1ib/site perl/5.8.7/1686-1inux-1d
/home/martink/perl/5.8.7/1ib/site perl/5.8.7
/home/martink/perl/5.8.7/1ib/site_perl

uname="linux xhost02 2.4.20-64gb-smp #1 smp wed aug 6 18:30:02 utc 2003 1686 unknown unknown gnulinux '

el

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

rag BIOINFORMATICS
Lol Perl Workshop e G EN O M E
1.0.1.8 = Introduction to Perl = = CS‘CE I E NTC RESE

Perl variables

-Perl does not require that you specify what you want to store in a variable
- this is a contrast to typed languages like C or Java
-this is a boon and a bane — but you are in control, not the language

-the same variable, at different times, can hold
*a humber
*a string
- a letter
- binary data

- Perl differentiates variables on the basis of plurality
-a scalar variable holds a single value (a number, a string, a letter)

-an array variable holds multiple values (a list of numbers, a list of strings)
- a hash is a special type of array variable in which elements are indexed by strings, not integers

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

rag BIOINFORMATICS
Lol Perl Workshop | = o L G EN 0 M E
1.0.1.8 = Introduction to Perl __E i CS‘CE I E NTC RESE

Perl variables

-Perl variables are preceded by a character that identifies the plurality of the

variable
(///////animal\\\\\\\
$animal @animal %animal
scalar array hash

you cannot access the value in a variable without using the appropriate prefix

-Sanimal, @animal and %animal are different variables
-they are completely independent
-they can hold different values

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r;a_'e' BICINFORMATICS

Perl Workshop il B

- GENOME
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Perl variables

-you can name your variable whatever you want (mostly)
- no special characters like $@% in variable names (obviously)
- cannot begin with a number
“no spaces

good bad

$animal
$animal123

$123animal
$big animal

$big animal
$BigAnimal

$big;animal

- Perl is case sensitive
- Sanimal S$Animal and SANIMAL are all different variables

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Variable Assignment

-to give a variable a value, use =

$x = 1;
$y = 2;
$z = 3;
$x = $y = 0; # set both variables to zero

($x,%y,%$z) = (1,2,3); # we’ll see this later

use undef to force a variable to become undefined

$x
$x

1;
undef; # explicitly undefines $y

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

' BIOINFORMATICS
r@? Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Scalars

-scalars are identified by $ and can hold only one value at a time
-scalar is like a cup — if you want coffee, you need to remove the tea
-arrays are more like icecube trays — you can have many icecubes

#!/usr/bin/perl 1. always specify where your perl interpreter is

a comment

$animal = “Camel”; 2. each line must be terminated by a semicolon
print $animal,”\n”;

$animal = “12 Camels”;

print $animal,”\n”;

$animal = 12; # an inline comment
print $animal,”\n”;

3. \n codes for new line

4. # indicates the rest of the line is a comment
Camel
12 Camels
12

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r;a_'e' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Basic Operators

-Perl has a lot of different operators — actions that you can apply to variables
-unary/binary/trinary — operate on one/two/three scalars at a time

-Perl will try to do the right thing when you are operating on scalars
-try mixing numbers and strings in an operation to see what happens

$w = “camel”;

$x = 2;

$y = 3; + - %/ basic arithmetic
243 = 5

$z = $x + $y; #5

$z = $x * $y; # 6 ok exponentiation

$z = $x / %y, # 0.66666 2*¥*%3 = 8

$z = $w + $x; # 2 . concatenation (period)

$z = $w * $x; # 0 2.3 = 23

$z = $w . $x; # camel2

$z = $x . $y; # 23

$z = $w + $w; # O

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

rag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Functions

-functions are things that Perl knows how to do out of the box

-sqrt()
-sin()
rand() =1 will use rand() for a lot of examples

-you can write your own functions, of course

$x = rand(); # x is a random number uniformly sampled from [0,1)

print $x,”\n”;
print sqrt($x),”\n”;
print $x**$x,”\n”;

0.0730786472558975
0.27033062581938
0.825975844619357

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

raa' BICINFORMATICS

Perl Workshop

agia GENOME
1.0.1.8 — Introduction to Perl CS‘CE I E NTC RESE

Flow Control

-Perl has a wide variety of branching operators
- looping
- condition checking

-let’s learn the if conditional so we can write simple scripts

= d ;
B = rend0) if (CONDITION) {
if (($x <= 0.5) { CODE
print $x . “ is small\n”; } else {
} else { CODE
print $x . “ is large\n”; }
}

-conditional operators

- == tests for equality between numbers
- eq tests for equality between strings

5/13/2008

1.0.1.8.1 - Introduction to Perl - Variables

r;a_'e' BICINFORMATICS

Perl Workshop

1.0.1.8 =Introduction-to Perl

Many Perlisms Ahead

-Perl is about doing the same thing in a variety of ways
- be creative
- be stylish
- be careful!

-start slowly and increase flair as necessary
-make sure that, above else, you can understand your code!

if ($x <= 0.5) {
print $x,”\n”;

}

if ($x <= 0.5) { print $x,”\n”; } if (CONDITION) { CODE }

print $x,”\n” if $x <= 0.5; CODE if CONDITION;

o

[

el

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

raa' BICINFORMATICS

Perl Workshop

agia GENOME
1.0.1.8 — Introduction to Perl = CS‘CE I E NTC RESE

Interpolation

-interpolation can be a great source of frustration

-Perl tries to make it as painless as possible

~how a language interpolates variables is how a language decides how to evaluate
strings, which may contain variables

$x = “Camel”;
$y = “I have a pet $x”;
print $y;

I have a pet Camel

-rule #1— Perl interpolates variable values in double quotes

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

' BIOINFORMATICS

M Perl Workshop

e GENOME
1.0.1.8 = Introduction to Perl - FE R CS‘CEIENTCRESE

Interpolation — double quotes

-you can safely tuck your variables inside double quote and their values will be
evaluated and inserted into the string

$x = “Camel”;

$y1 = “I have a pet $x”;
$y2 = “I have a pet “ . “$x”;
$y3 = “I have a pet “ . $x;

-variables will be interpolated, but no operations will be performed

$x = “Camel”;

$y = 2;

$z = 3;

$w = “I have a pet $x who told me $y times $z is $y*$z”;

I have a pet Camel who told me 2 times 3 is 2*3

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

raa' BICINFORMATICS

Perl Workshop

agia GENOME
1.0.1.8 — Introduction to Perl = CS‘CE I E NTC RESE

Interpolation — double quotes

-if you want results of operations included in strings
- concatenate them in
- use temporary variables

$x = “Camel”;

$y = 2;

$z = 3;

$t = Sy * $z;

$wl = “I have a pet $x who told me $y times $z is $t”;

$w2 = “I have a pet $x who told me $y times $z is “ . $t;

$w2 = “I have a pet $x who told me $y times $z is “ . $y * $z;
I have a pet Camel who told me 2 times 3 is 6

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Interpolation —single quotes

-no interpolation happens if you use single quotes

$x = “Camel”;
$y = 2;
$z = 3;
$t = %y * $z;

$wl = ‘I have a pet $x who told me $y times $z is $t’;

I have a pet $x who told me $y times $z is $t

-‘6x’ is a string that contains the characters “$” and “x”, not the variable $x
you may want to print the text “$x” and not the value of the scalar x

$s1 = $x’°;
$53 = ($) . (X);
$s2 = “\$” . “x”; # since $ is a special character, it needs to be escaped in double quotes

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop e L L G EN O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Interpolation — an *ation of pain

-you’ll get used to Perl’s own interpolation mechanism, but at first it can be
frustrating

$x = “If I join the espresso club, I will save $2 on every coffee!”;

If I join the espresso club, I will saveTcnlevery coffee!

1
what’s going on? where’s your money?

-you have just discovered the mysteries of Perl’s special variables
- special, as in hidden and confusing and impossible to remember
-don’t worry, we’ll get to these shortly

-for now, if you have words or numbers preceeded by $ or @ or % in your strings,
expect the unexpected!

-don’t worry, we’ll sort these things out eventually

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r;a_'e' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl - CS‘CE I E NTC RESE

Interpolation

-understanding and getting a handle on interpolation is important because you'll
be wanting to print things out

-Perl offers assistance in interpolating your strings

“ «

-think of the quotes

{14
]

as an operator, not as a container for a string
operates to replace all mention of variables with their values
- “ operates to ignore all mention of variables and treats the string as a literal

-instead of quotes, you can use quote and quote-like operators

« » .
$x = “camel”;

print “$x”; # camel

print qq(camel); # camel qq(STRING) is equivalent to “STRING“
print qq($x); # camel

print qq(“$x”); # “camel”

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Uses of qq()

-qq() helps you deal with strings which have quotes in them
-remember, the qq(and) are the parts of the operator.

$x = “My camel’s name is “Bob””;

print $x

Bareword found where operator expected at ./script.pl line 21, near ""
(Missing operator before Bob?)

syntax error at ./script.pl line 21, near ""My camel's name is "Bob"

String found where operator expected at ./script.pl line 21, near "Bob"""

Execution of ./script.pl aborted due to compilation errors.

My camel's name is "Bob"

$x1
$x2

«My camel’s name is \“BOb\””;
qq{My camel’s name is “Bob”};

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

' BIOINFORMATICS

ra" Perl W’orkshop : . G EN O M E
1.0.1.8 = Introduction to Perl - FE R CS‘CEIENTCRESE

Flexibility of qq()

-remember how | said Perl is flexible and gives you control

-how about flexible delimiters? now that’s control!
non alpha-numeric, non whitespace

qq(My camel’s name is “Bob”);
qq{My camel’s name is “Bob”};
qq/My camel’s name is “Bob”/;
qq|My camel’s name is “Bob”|;
qq$My camel’s name is “Bob”$;
qq*My camel’s name is “Bob”*;
qq!My camel’s name is “Bob”!;

-you get the idea
-there are other operators that have this flexibility
- pick a delimiter and stick with it

/My camel’s name is “Bob”. His answer to $x is spitting and his favourite char is (/;
qq/My P g

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = = CS‘CEIENTCRESE

qq() vs q()

-q() is equivalent to single quotes
- all the flexibility of qq() without the interpolation

$x = 2;
q($x) # $x
qq($x) # 2

-if you have strings with lots of special characters, gqq() and q() are a boon

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

raa' BICINFORMATICS

Perl W’orkshop e L L G E N O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

${VAR}

-consider the following problem
you want to print out a variable and immediately another string after it

$x = 10;

print qq(Camels spit up to $xm); # bad - no variable $xm
print qq(Camels spit up to ${x}m); # good

print “Camels spit up to ${x}m”; # good

print “Camels spit up to $x”.”m”; # good but messy

print “Camels spit up to $x \bm”; # obfuscated

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r’ag BIOINFORMATICS
Lol Perl Workshop o=y G EN O M E
1.0.1.8 = Introduction to Perl = CS‘CE I E NTC RESE

Interpolation Examples

-let’s apply some of the things we’ve seen

$X “X” ;
$X “X” ;

print q($x) . qq(is the string “$x”);
print q($X) . qq(is the string “$X”);

1))
X

$x is the string
$X is the string “X”

if (($x eq $X) {
print qq(\$x = $x and \$X = $X have the same contents);
} else {
print qq(\$x = $x and \$X = $X are different);
$x = x and $X = X are different
print qq(If I get a new camel, I will name him $x.$X.$x);

If I get a new camel, I will name him x.X.x

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

r;a_'e' BICINFORMATICS

Perl W’orkshop o=y G EN O M E
1.0.1.8 = Introduction to Perl =__ CS‘CE I E NTC RESE

Contratulations — you have conquered your fears

-you can now understand the following Perl line noise —see it’s not that hard

$x = 1;

“$X.” 1.
$X.”.” 1.
qq<$x).”.” 1.
qq(${x}.) 1.
qq($x.) 1.
q!{${x}}! {${x}}
“APx$x.” $x1.
“x${x}x” X1X
“Nx${x}x” $x1x
qq($x+${x}1+\$x) 1+11+$x

5/13/2008 1.0.1.8.1 - Introduction to Perl - Variables

ESE

w

4]

_ — n lw

5 : 2 2

o o .mm

w O s =2

o s & _ o2

p= STEZ E 2L

c nS.mqu .ﬂmX

2 ~ 5578 9 & U S o

] o O T T =~

v - 2828 ° ¢ ¢ E o2
s w =

5 C C==ocnHa%

< O 5 ® ® O I ¥ % € 2

o.l O-... e-
5 9 > =
ne - -

IS

w
0
e

©
=

T
>

1
-

U
[a W

[e]
-+

c
9
-+

O

>
o

o

—
-+
=

1

N

Al

S A
R TR

W
N

a,., 3 AR
i
ot .r_f.p‘d_.. . Wy

B ,U,Ju..

Workshop
1.0.1.8 =Introduction-to Perl

erl

BICINFORMATICS

l)

s

f

