NOTHING

no data, no ink

I already talked about data-to-ink-ratio. Taken to the extreme, if there is no data to show, no ink should be used.

The idea of "no data to show" may correspond to a variety of scenarios. There may be sincerely no data to show-no values were collected. Or, there are no significant changes to see.

Where possible, you should use empty space to indicate lack of data or lack of change in data. You should never be distracted by something that isn't relevant and empty space is not distracting-it really just provides contrast to adjacent elements, which presumably correspond to actual data or actionable data.

JAK2

TSLP

CRFL2

ZAP70
JAK2
TSLP
CRFL2

D $\square \square \square \square \square \square \square \square \square \square \square$

F \quad 目
$\mathrm{G} \square \square \square \square \square \square \square \square \square \square$

ZAP70
A ■■ாா
B ■ாா

D

E
F
G

ZAP70	JAK2
B 뭄밈	
	뭄뭄
D	
E	
F	

ㄴㅁㅁㅁㅁㅁㅁㅁㅁ ■ாாாாாாாดดด ■ாாாாாாாாா -ロாாாாாாாாா

ㄴㅁㅁㅁㅁㅁㅁ

CRFL2

 ■ாாாாாாாாாாா

-

CRFL2
두ㅂㅜㅜㅂ

$$
\begin{aligned}
& \text { い「OO } \\
& \left\{\begin{array}{l}
\longleftrightarrow \\
\longleftrightarrow \\
\longleftrightarrow \\
\longleftrightarrow
\end{array}\right.
\end{aligned}
$$

Individuals
nroot
$\left\{\begin{array}{lllllllllllllllll} \\ \hline\end{array}\right.$

DISJOINT
INDIVIDUALS

OVERLAPPING
INDIVIDUALS

\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet									
\bullet	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
\bullet	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
\bullet	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	1
-	0	1	0	1	0	1	0	1	0	1	0	1	0	0	1	1
\bullet	\bullet	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
\bullet	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
\bullet	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1	0
\bullet	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0

DISJOINT
INDIVIDUALS

\bullet	\bullet	1	0	0	0	0	0	0	0	0	0	\bullet	\bullet	\bullet	\bullet	
\bullet	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
\bullet	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
\bullet	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
\bullet	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
\bullet	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

OVERLAPPING
INDIVIDUALS

\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet									
\bullet	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
\bullet	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
\bullet	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	1
-	0	1	0	1	0	1	0	1	0	1	0	1	0	0	1	1
\bullet	\bullet	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
\bullet	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
\bullet	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1	0
\bullet	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0

Rhytididae

- < 95\%

The genome, say...the human genome... is an interesting thing.
Most of it is uninteresting. It's like islands in the ocean. There is a lot of ocean and we're mostly interested in the islands.

The ocean is still data, for sure, but it's not as interesting as the data from the islands. Moreover, a lot of what is interesting are the ways in which the islands are different from one another.

This means that the island data itself isn't interesting, but only how it differs from other island data.
If you realize that it's the differences that are important you come to the conclusion that... most of your data should not be shown! Compute the differences and show those-everything else should disappear.

So you go from showing data... data... data... data... to nothing... nothing... oh look a difference... nothing.

Let's look at an example.

Species	ExF region	C-terminus
(human numbering)	420430	500
	1 \|	\|
GreenPuffer	avlg--rsgvrlecfrfstreep	pdclgeemav
Python	splgrsdclvklecfhflpsmg-	gdsledeval
Platypus	splgrrdssaklecfrflapgdr	gdslddeiav
Shark	splgmdncliklehfhflrdekr	gdclddeiav
Tasmanian Devil	splgrrdclvklecfrflppgdt	gdslddeiav
Molerat	splgrrdclvklecfrflpsedt	gdslddeiav
BushBaby	splgrrdclvklecfrflppedt	gdglddeiav
Human	splgrrdclvklecfrflppedt	gdglddeiav
Cow	splgrrdclvklecfrflppedt	gdslddeiav
Whale	splgrrdclvklecfrflppedt	gdslddeiav
Rat	splgrrdclvklecfrflpaedn	gdslddeiav
Hamster	splgrrdclvklecfrflppedt	gdslddeiav
Elephant	splgrrdclvklecfrflpsedt	gdslddeiav
Turtle	spigrsdclvkleyfrfppgaa-	gdslddeiav
Alligator	spigrsdclvklecyrflpnsm-	gdsledeiav
Finch	spigrkdclvklecyrflpd-sg	gdsledeiav
Hummingbird	spigrndclvklecyhflpdssg	gdslddeiav
Chicken	spigrndclvklecyhflps-sg	gdsledeiav
Trout	nhlgrdqcllklecfrflpgppt	pdclgdeiav
Rice Fish	splgrdqcllklerfrflpgppg	pdclgdeiav
Guppy	splgrdqcllklecfrflpgppg	pdclgdeiai
Moonfish	splgrdqcllklecfrflpgppg	pdclgdeiai
	:* . ${ }^{\text {** }}$: ${ }^{\text {* }}$	

Really be sensitive to this idea of showing only differences or features that are relevant.

Look, if you have a data set and none of the observations are statistically significant, then you could argue... do you have anything to show? That's actually an interesting discussion and it comes down to what kind of conversation you're having about your data.

But if you're showing a slide for $15-30$ seconds during a conference, don't bother the audience—let's assume that they're actually listening-with background noise and irrelevant outliers. Focus down on what you think means something. Showing them the things that are worth seeing, and only that.

Then, later, if they're interested, give them more.
Remember, your audience can ask for more, but it's always too late to ask for less.

Martin Krzywinski, Kim Bell-Anderson \& Philip Poronnik
written and designed by
Martin Krzywinski
production
One Ski Digital Media Productions
with financial support by
University of Sydney

filmed at
University of Sydney, Australia

EXERCISE 1

Redesign this table.
What is the role of the green color here?

EXERCISE 2

Redesign this table．
What is the role of the red color here？

RML			$\begin{gathered} 22 \mathrm{~L} \\ \text { control } \end{gathered}$	Samples inoculated in $\operatorname{Tg}\left(\right.$ MoPrP $\left.{ }^{169,170,174}\right)$ mice											－	
			Mock	22 L			cwD			RML						
	，	ound			1	2	1	2	3	1	2	3	1	2		3
	R1	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／		／4	
	R2	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4		0／4	
$⿷ 匚 ⿱ 艹 ⿸ ⿻ 一 丿 口 \mid$	$\sum_{\infty}^{\circ} R$	1／4	1／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4			0／4	
$\stackrel{\Omega}{B}$	R1	4／4	／4	0／4	0／4	0／4	0／4	0／4				4			0／4	
	药 R2	4／4	4／			4	0／4		0／4		0／4	0／4			0／4	
	R3	4／4	4／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	0／4	

	RML control			$\begin{gathered} 22 \mathrm{~L} \\ \text { control } \end{gathered}$	Samples inoculated in $\mathrm{Tg}\left(\mathrm{MoPr} \mathrm{P}^{169,170,174}\right)$ mice											
				Mock	22L			CWD			RML					
		MCA	und			1	2	1	2	3	1	2	3	1	2	3
	$\begin{aligned} & \text { R } \\ & \text { R } \end{aligned}$	R1	.	-		.	1	2	3	1	2	3	.	.	.	
	$\begin{aligned} & \text { id id } \\ & \text { id } \end{aligned}$	R2	-	-	-	-	-	-	-	-	-	-	-	-	-	
	$\sum_{i=1}^{o}$	R3	1	4	-	-	-	-	-	-	-	-	-	-	-	
$\frac{0}{\vec{n}}$		R1	4	4	-	-	-	-	-	-	-	-	-	-	-	
	$\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{8}{6} \end{aligned}$	R2	4	4	-	-	-	-	-	-	-	-	-	-	-	
		R3	4	4		-	-	-	-	-		-	-	-	-	

EXERCISE 3

Redesign this figure.

MHO ENT RHT QNT QNE QTA RTR QTT OHT QTT RHT LOT RHR QTK OHT NIR
H492

