

CANADA'S MICHAEL SMITH GENORE SCENENCES CENTERE

ESSENTIALS OF DATA VISUALIZATION THINKING ABOUT DRAWING DATA + COMMUNICATING SCIENCE

NOTHING

no data, no ink

I already talked about data-to-ink-ratio. Taken to the extreme, if there is no data to show, no ink should be used.

The idea of "no data to show" may correspond to a variety of scenarios. There may be sincerely no data to show—no values were collected. Or, there are no significant changes to see.

Where possible, you should use empty space to indicate lack of data or lack of change in data. You should never be distracted by something that isn't relevant and empty space is not distracting—it really just provides contrast to adjacent elements, which presumably correspond to actual data or actionable data.

Nested insertions

Genome Res (2007) 17:422–432.

Cross-Species Analysis

ZAP70

TSLP

JAK2

CRFL2

		ZAP70	JAK2	TSLP
control	А			
	В			
	С			
	D			
	Е			
	F			
	G			

patient

CRFL2

CRFL2

CRFL2

INDIVIDUALS

INDIVIDUALS

DISJOINT

INDIVIDUALS

		lacksquare		lacksquare	lacksquare	lacksquare	lacksquare	lacksquare	lacksquare								
	ullet	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	lacksquare	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
00LS		0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
PO		0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	ullet	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

OVERLAPPING

INDIVIDUALS

		lacksquare	\bullet	\bullet	lacksquare	lacksquare	lacksquare	lacksquare	\bullet	\bullet		lacksquare	lacksquare	lacksquare	lacksquare	lacksquare	lacksquare
	•	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	\bullet	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	\bullet	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	1
POOL		0	1	0	1	0	1	0	1	0	1	0	1	0	0	1	1
PO	\bullet	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
		1	1	0	0	1	1	0	0	1	1	0	0	1	1	1	0
	lacksquare	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0

DISJOINT

INDIVIDUALS

0
•
0
0
0
0
0
0
1

OVERLAPPING

INDIVIDUALS

		\bullet	lacksquare	lacksquare	\bullet	lacksquare	\bullet	lacksquare	lacksquare	lacksquare		lacksquare	\bullet	\bullet	\bullet	lacksquare	\bullet
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	lacksquare	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	lacksquare	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	1
POOLS	•	0	1	0	1	0	1	0	1	0	1	0	1	0	0	1	1
PO	lacksquare	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	•	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
	•	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1	0
		1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0

Stylommatophora

Stylommatophora

The genome, say...the human genome... is an interesting thing.

ocean and we're mostly interested in the islands.

the islands are different from one another.

differs from other island data.

differences and show those—everything else should disappear.

oh look a difference... nothing.

Let's look at an example.

- Most of it is uninteresting. It's like islands in the ocean. There is a lot of
- The ocean is still data, for sure, but it's not as interesting as the data from the islands. Moreover, a lot of what is interesting are the ways in which
- This means that the island data itself isn't interesting, but only how it
- If you realize that it's the differences that are important you come to the conclusion that... most of your data should not be shown! Compute the
- So you go from showing data... data... data... data... to nothing... nothing...

Species (human numbering) 420 GreenPuffer Python Platypus Shark Tasmanian Devil Molerat BushBaby Human Cow Whale Rat Hamster Elephant Turtle Alligator Finch Hummingbird Chicken Trout Rice Fish Guppy Moonfish

ExF region 430

avlg--rsgvrlecfrfstreep splgrsdclvklecfhflpsmgsplgrrdssaklecfrflapgdr splgmdncliklehfhflrdekr splgrrdclvklecfrflppgdt splgrrdclvklecfrflpsedt splgrrdclvklecfrflppedt splgrrdclvklecfrflppedt splgrrdclvklecfrflppedt splgrrdclvklecfrflppedt splgrrdclvklecfrflpaedn splgrrdclvklecfrflppedt splgrrdclvklecfrflpsedt spigrsdclvkleyfrfppgaaspigrsdclvklecyrflpnsmspigrkdclvklecyrflpd-sq spigrndclvklecyhflpdssg spigrndclvklecyhflps-sg nhlgrdgcllklecfrflpgppt splgrdqcllklerfrflpgppg splgrdqcllklecfrflpgppg splgrdqcllklecfrflpgppg pdclgdeiai * * * * * *

C-terminus 500 pdclgeemav gdsledeval gdslddeiav gdclddeiav gdslddeiav gdslddeiav gdglddeiav gdglddeiav gdslddeiav gdslddeiav gdslddeiav gdslddeiav gdslddeiav gdslddeiav gdsledeiav gdsledeiav gdslddeiav gdsledeiav pdclgdeiav pdclgdeiav pdclgdeiai * * ****

			E	xF region	C-terminus
		420		430	500
RESIDUE VARIATION		3 3 2 0 3 6 4	3 3 4 2	0 0 4 2 2 0 3 4 7 7	8 6 2 0 2 0 3 2 0 3 0 3
human				lecfrflppe	
COW	0	• • • • • •	• • • •		
vvi i elite		•			
bushbaby	0	• • • • • •			
tasmanian devil	0	• • • • • •	• • • •		• • • • • • • • •
molerat	1	• • • • • •	• • • •	•••••••••••••••••••••••••••••••••••••••	
hamster	1	• • • • • •			• t • • • • • • • • •
rat	2	• • • • • •		••••a•	• n • • • • • • • •
elephant	2	• • • • • •	• • • •	•••••••••••••••••••••••••••••••••••••••	• t • • • • • • •
platypus	6	• • • • • •	ssa•	· · · · a · g	· r
alligator	7	··i ·s·	• • • •	· y · · · n s	m – • • • • • • •
		•		$\cdot y \cdot \cdots d -$	
turtle	8	···i···s·	• • • •	y · · p · g a	a – • • • • • • •
chicken	7	•••• • n •	• • • •	\cdot y h $\cdot \cdot$ s –	sg
hummingbird	8	· · i · n ·	• • • •	\cdot y h $\cdot \cdot$ d s	sg · · · · ·
python	9	•••••••••••••••••••••••••••••••••••••••	• • • •	$\cdot \cdot \mathbf{r} \cdot \cdot \mathbf{s} \mathbf{m}$	g- · · · v l
shark	10	•		$h \cdot h \cdot rd \cdot$	
guppy	11	•••• d q	$c \cdot l \cdot$	· · · · · gp	pg p c g · · ·
					pg p c g··i
					pg p c g···
					pt p c g···
green puffer	19	av – – r	sg·r	• • • • str•	ep pcgemv

J Neurosci (2015) 35:10888–10897.

J Neurosci (2015) 35:10888–10897.

Really be sensitive to this idea of showing only differences or features that are relevant.

Look, if you have a data set and none of the observations are statistically significant, then you could argue... do you have anything to show? That's actually an interesting discussion and it comes down to what kind of conversation you're having about your data.

But if you're showing a slide for 15-30 seconds during a conference, don't bother the audience—let's assume that they're actually listening—with background noise and irrelevant outliers. Focus down on what you think means something. Showing them the things that are worth seeing, and only that.

Then, later, if they're interested, give them more.

Remember, your audience can ask for more, but it's always too late to ask for less.

created by Martin Krzywinski, Kim Bell-Anderson & Philip Poronnik

written and designed by

Martin Krzywinski

production One Ski Digital Media Productions

with financial support by

University of Sydney

University of Sydney, Australia

filmed at

EXERCISE 1

Redesign this table.

What is the role of the green color here?

					Fe	ema	le F	ore	leg													м	ale	For	eleg	5									Mal	e ai	nd F	em	ale M	Vid	leg			М	ale	and	Fen	nale	Hin	dle	5
	f5s	f5v	fSb	14s	f4b	f4c	f3b	f3a	f2b	f2a	f1d	flc	f1b	fla	m5s	m5b	m5a	m4s	m4d	m4c	m4b	m4a	m3c	m3b	m3a	m2d	m2c	m2b	m2a	m1d	m1c	m1b	mla	f5v	f5a	f4s	f4b	f3a	f2b	110	flc	fla	f5v	fsь	f5a	140 f4s	f3a	f2b	f2a	f1d	f1a f1c
Gr5a	+	-	+			-	+	-	+	-	-	-	-	-	+	- +	-	+	-	-	-	-	-	+			-	+	-	-	-	-		- 4	-	+	-	-		•		-	-	+	-	+ •		-	-	-	
Gr8a	+	-	-			-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-			-		-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr22b	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-			-	-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr22c	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr22d	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr28a	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr28b.a	+	-	-			-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr28b.c	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-				-	-	-	-	-		+ -	-	-	-	-			-	-	+	-	-			-	-	-	
Gr28b.d	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- []		-	-	-	-			-	-	-	-	-			-	-	-	
Gr28b.e	+	-	-		-	-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-			-	-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr32a	-	-	+	- 4		+	-	-	-	-	-	-	-	- [+	-	+	-	+	-	-	-	-					-	-	-	-	- -	- 4	-	+	-	-			-	-	-	+	-	+ -		-	-	-	
Gr33a	+	-	+	- 4		+	-	-	-	-	-	-	-	-	+	. +	-	+	-	+	-	-	-	-			-		-	-	-	-	- -	- +		+	-	-			-	-	-	+	-	+ -		-	-	-	
Gr36a	-	+	-			-	-	-	-	-	-	-	-	- [+ -	-	-	-	-	-	-	-	-			-	-	-	-	-	-		+ -	-	-	-	-			-	-	+	-	- 1			-	-	-	
Gr39a.a	+	-	+			+	-	-	-	-	-	-	-	-	+	- +	-	+	-	+	-	-	-	-			-	-	-	-	-	-	- [- +	-	+	-	-				-	-	+	-	+ -		-	-	-	
Gr39b	+	-	-			-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-				-	-	-	-	-	- -		-	-	-	-			-	-	-	-	- 1			-	-	-	
Gr43a	-	+	-			-	-	-	-	-	-	-	-	- [+ -	-	-	-	-	-	-	-	-			-	-	-	-	-	-		+ -	-	-	-	-			-	-	+	-	-			-	-	-	
Gr57a*															. 7																		· [•	•							
Gr58c	-	-	+	- 4		+	-	-	-	-	-	-	-	-	-	+	-	+	-	+	-	-	-	-	-		-	-	-	-	-	-	- -	- 4	-	+	-	-			-	-	-	+	-	+ •	-	-	-	-	
Gr59a	+	-	-			-	۰.	-	-	-	-	-	-	-	+		-	-		-	-	-	-	-					-	-	-	-	- -		-	-		-			-	-	-	-	- 7			-	-	-	
Gr59d	+	-	-			-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-				-	-	-	-	-	- -		-	-	-	-			-	-	-	-	-			-	-	-	
Gr61a	+	+	+		- +	-	+	-	+	-	-	-	-	-	+ -	+ +	-	+	-	-	+	-	-	+			-	+	-	-	-	-		+ +		+	-	-			-	-	+	+	-	+ -		-	-	-	
Gr64c	-	+	+		- +	-	+	-	+	-	-	-	-	- [+ +	-	+	-	-	+	-	-	+					-	-	-	-		+ +		+	-	-				-	+	+		+ -		-	-	-	
Gr64e	+	+	+			-	+	-	+	-	-	-	-	-	+ -	+ +	-	+	-	-	-	-	-	+					-	-	-	-		+ +		+	-	-				-	+	+	-	+ -		-	-	-	
Gr64f	+	+	+		- +	-	+	-	+	-	-	-	-	-	÷ -	+ +	-	+	-	-	+	-	-	+					-	-	-	-		+ +	-	+	-	-				-	+	+	-	+ -		-	-	-	
Gr66a	+	-	-			-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-					-	-	-	-			-	-	-	-				-	-	-	- 1			-	-	-	
Gr68a**														· [•		·			•					
Gr89a	+	-	+			+	-	-	-	-	-	-	-	-	+		-	+	-	+	-	-	-	-	-				-	-	-	-	- -	- 4		+	-	-				-	-	+	-	+ -		-	-	-	
Gr93b	+	-	-			-		-	-	-	-	-	-	-	+		-	-		-	-	-	-	-				-	-	-	-	-	- 1		-	-		-			-	-	-	-	- 1			-	-	-	
Gr98d	+	-	-			-	-	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-					-	-	-	-	- .		-	-	-	-				-	-	-	-			-	-	-	

J Neurosci (2014) 34:7148–7164.

15								eleg														1.01	eleg	_									nome	anu	FEI	man	e IVII	idleį	5			IVIGIN	e all	иге	:ma	le Hi	nure	eg
	157	f5b	f5a	14s	f4c	f3b	f3a	f2b	ť2a	f1d	fic fic	415 613	m5s	m2v	m5a	m4s	m4d	m4c	m4b	m4a	m3c	m3b	m3a	∎zu	m2c	m2b	m2a	m1d	mlc	mla	45v	1 5b	f5a	140 f4s	f3a	f2b	f2a	f1d	тта f1c	15v	150	f5a	f4s	 f4b	120 f3a	f2a 471	f1d	f1c
5a 🔴		•		•												•						•																										
8a 🔴																																		1														
22b 🔴																																																
22c 🔶		_					_									_		_								_															_		_					
22d																																																
28a 🔴																																																
28b.a																																																
28b.c																		_																														
28b.d																																																
28b.e																																																
32a																																																
33a 🔴																																		I														
36a																																																
39a.a																																																
39b 43a																																																
43a 57a*	•	,												•																											•							
58c		-		•														-																-														
59a																																																
59d •																																																
61a -				•		•							•						•			•				-•								•														
64c				• •										•		•						•				•								•									•					
64e				•										•		•						•				•								•									•					
-		•		•									•	\bullet		•		-	•			•				-•					+•			•	_						-•							
66a 🔴																																																
68a**																																																
89a 🔴		•		•												•																•		•							•		•					
93b 🔶							_						•																																			
98d																																																
		-		-			4				-		-			-		-													-									-								

.

EXERCISE 2

Redesign this table.

What is the role of the red color here?

					Sa	mple	es ino	culat	ted i	n Tg(MoP	rP ¹⁶⁹	,170,17	′4) m	ice	B
			RML control	22L control	Mo	ock		22L			CWD			RML		Unseede
	-	MCA ro	und		1	2	1	2	3	1	2	3	1	2	3	5
	p169,170,174	R1	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4
	-	R2	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4
Ibstrate	Tg(M₀P	R3	1/4	1/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4
Sub	9	R1	4/4	4/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4
	57BL/	R2	4/4	4/4 4/4 4/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/ 4	0/4	0/4	0/4	0/4
	0	R3	4/4	4/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4

					Sai	mple	es ino	cula	ted in	n Tg(l	MoF	PrP ¹⁶⁹	9 ,170,1 7	′ ⁴) m	nice
			RML control	22L control	Mo	ock		22L			CWD			RML	
		MCAr	ound		1	2	1	2	3	1	2	3	1	2	3
	170,174	R1	•	•	•	•	•	•	•	•	•	•	•	•	•
	0 _r p169,	R2	•	•	•	•			•			•	•		•
ubstrate	Tg(MoPrP ^{169,170,174})	R3	1	4	•	•	•	•	•	•	•	•	•	•	•
<u>v</u>		R1	4	4	•	•	•		•	•		•	•	•	•
	C57BL/6	R2	4	4 4 4	•	•	•	•	•	•	•	•	•	•	•
	0	R3	4	4	•	•	•		•	•		•	•	•	•

•

Unseeded

	PMCA round	con RML	
Tg	R1	•	•
	R2	•	•
	R3	1	1
Substrate			
C57BL/6	R1	4	4
	R2	4	4
	R3	4	4

•

Samples inoculated in TG mice

Mock	22L	CWD	RML
12	123	123	123
• •	• • •	• • •	• • •
• •	• • •	• • •	• • •
• •	• • •	• • •	• • •
• •	• • •	• • •	• • •
• •	• • •	• • •	• • •
• •	• • •	• • •	• • •

EXERCISE 3

Redesign this figure.

Genome Res (2006) 16:584–594.

MHQ ENT RHT QNT QNE QTA RTR QTT QHT QTT RHT LQT RHR QTK QHT NIR

