ENCODING

choosing a data representation

When you think of data visualization, the first ideas that come to mind are a scatter plot, or a bar chart, a box plot or a network diagram.
These are all data encodings-methods that relate data values to the positions, sizes and shapes of the lines or symbols that appear on the screen or in a figure.
There are many data encodings-which do you choose?
First, it must help answer relevant questions about the data that are difficult, or impossible, to answer by staring at the raw data itself. As such, the encoding may be of the data or some transformation of the data that addresses your questions. Just because you have a network doesn't mean you should automatically draw a force-directed hairball.
Second, it should accommodate the uncertainty of the data. How do you incorporate uncertainty in a scatter plot? Easy-error bars. How about a pie chart. Ah, well, umm. We'll come back to this later.
Third, it should be flexible enough to address questions that you haven't thought of yet. This sounds vague, I know. What I mean is that if the encoding warps the data or doesn't to at least try to limit occlusion (the phenomena where points overlap and hide behind each other), it's likely to be less useful.

DEPART

$\begin{aligned} & \text { Trains } \\ & \substack{\text { Then } \\ \text { sind } \\ \hline} \end{aligned}$	auch départ Departures trains Dachation Dostination	Hinweise Remarks Particularités		Abfahrt Zug n Train n			der züge	
$11^{\mathrm{h}} 58$	DAMMARTINECREPY SOISSONSEANIZY－PINONELON				\square	tor－	849917	18
$12^{\text {h }} \mathrm{O} 1$	PERSANECHAMBLY MERUDST－SULPICEDBEAUVAIS					tor－	847419	21
$12^{\text {h }} \mathrm{O} 1$	BRUXELLES－MIDIELIEGE A ACHENEKOLNEESSEN	CONFORT THAITS ${ }_{\text {IT }}$ CONFORT 2				2	9437	9
$12^{\text {h }} 07$	CREIL COMPIEGNE CHAUNY TERGNIEREST－QUENTIN	T－EET 2－mClasse					12309	11
$12^{\text {h }} 10$	ORRY－LA－VILLE CHANTILLY－GOUVIEUXECREIL					tow	847609	13
$12^{\text {h }} 25$	BRUXELLES ROTTERDAM■SCHIPHOL®AMSTERDAM					2	［－9339	
$12^{\text {h }} 28$	CREILLONGUEAUEAMIENS	1－－ET 2－－CLASSE					－12011	
$12^{\text {h }} 43$	LONDON－STEANCRAS INT	HALL LONDRES				Emimer	9029	Fenoon
$12^{\text {h }} 46$	LILLE FLANDRES	1－mer ${ }^{\text {m－CL a avec reservation }}$				rov	$\square 7043$	
－12 h 49	CREILERIEUX PONT■LONGUEIL®COMPIEGNE日®ロロロロ					tow	847807	
$12^{\text {h }} 52$	ARRAS LENS．BETHUNE HAZEBROUCK DUNKERQUE日GIL				E－	TOM	$\square 7321$	
$12^{\text {h }} 52$						Tou	$\square \square 121$	
$12^{\text {n }} 55$		CONFORT THALYS ${ }_{\text {1 }}$				2	$\square 9341$	
$13^{\text {h }} 01$	PERSAN CHAMBLY MERU日ST－SULPICEDBEAUVAIS					tom	847421	
$13^{\text {h }} 13$		HALL LONDRES				水：	9031	rencos
$13^{\text {h }} 16$	LILLEFLANDRES	meer 2－Cl avec reservation				TOM	7045	
$13^{\text {h }} 26$	CREPY VILLERS SOISSONS ANIZY－PINONELAON					tow	849921	
$13^{\text {h }} 59$	LONGUEAU AMIENS ABBEVILLE	1－EET 2－Classe					2013	
$14^{\text {h }} \mathrm{O} 1$	PERSAN CHAMBLY MERUSST－SULPICEDBEAUVAIS					tor	847423	
－14 ${ }^{\text {h }} 07$	CREIL［PONTECOMPIEGNE®TERGNIEREST－QUENTIN					tor	847905	

The visual display of quantitative information. R. Tufte (2001) 2nd ed. Text in original modified.

Task modulated units

Directionally tuned units

Task modulated units
Directionally tuned units

Task modulated units
Directionally tuned units

Submitted to Skills Beyond Science, 2015 Bactory Summer School, Helsingor, Denmark.
Redesign published in Environmental Microbiology, dx.doi.org/10.1111/1462-2920.13326

FREQUENCY OF VARIATION BY TYPE

deletion 105
duplication 76
SNP 75
indel 46
insertion 31

FREQUENCY OF VARIATION BY TYPE

One concept to always keep in mind is the so-called data-to-ink ratio.
Ask yourself: what ink on the page is directly related to data values and what ink is used for labels, grids, navigational components and design elements.

Then consider how to maximize ink used for data and minimize ink for everything else.

At the same time, always keep in mind ways to use less ink to tell the same story and show the same relationships without loss of accuracy and precision-and parsability!

Sometimes you need to use ink to clarify or avoid confusion. That's finedo this. The speed at which your readers understand your message and the depth of this understanding is part of the model.
So, think "data-and-its-understanding-to-ink" ratio.
But not all the data is relevant. If you can figure out which is-that's the holy grail. In fact, if you knew this you might just compute on the data and bypass the visualization. But, I encourage you to think about "actionable-data-to-ink" ratio, too.

FREQUENCY OF VARIATION BY TYPE

FREQUENCY OF VARIATION BY TYPE
deletion 105
duplication 76
SNP 75
indel 46
insertion 31

```
FREQUENCY OF VARIATION BY TYPE
```



```
FREQUENCY OF VARIATION BY TYPE
deletion 105
duplication 76
SNP 75
indel 46
insertion 31
```


FREQUENCY OF VARIATION BY TYPE

sample

A B

deletion 10551
duplication 7638

SNP	75	98
indel	46	5
insertion	31	32

FREQUENCY OF VARIATION BY TYPE
sample
A B
deletion 10551
duplication 7638

SNP	75	98
indel	46	5
insertion	31	32

FREQUENCY OF VARIATION BY TYPE
sample

FREQUENCY OF VARIATION BY TYPE
sample
A B
deletion 10551
duplication $76 \quad 38$
SNP 7598
indel 46 5
insertion 31 32
frequency of variation by type
sample

1.5

average line angle

We've started with some simple examples. There's a good reason for this. Always appreciate and use to your advantage the fundamental principles of data visualization. Simple examples embody these.

At no point, do you ever eject these principles. I don't care how big your data set is. Sure, they might be more nuanced or interrelated, if you're showing a lot of stuff on the page, but fundamentally you're still thinking about the same things:

Am I using ink responsibly?
Am I drawing shapes whose position and size can be accurately judged?
Am I making comparisons easy to make?
Am I visually emphasizing the things that are relevant?
Once your data size grows, a popular technique in visualization is called small multiples. Here, you break your data down into a large number of smaller sets and represent each set with the same primitive encoding. So, you might have a matrix of scatter plots or bar plots. Each of those individual small plots must be handled with care.

Martin Krzywinski, Kim Bell-Anderson \& Philip Poronnik
written and designed by
Martin Krzywinski
production
One Ski Digital Media Productions
with financial support by
University of Sydney

filmed at
University of Sydney, Australia

EXERCISE 1

Represent the "frequency of variation by type" two-column table as a bar plot.

Pay careful attention to bar width and the distance within groups (e.g. the deletion bars for A and B) and between groups (the deletion and duplication groups). Start with a ratio of
bar width : within : between $=1: 0.2: 1.5$
How does this look to you? Incorporate the golden ratio ($\varphi=1.62$) and its inverse ($1 / \varphi=\varphi$ $1=0.62$) and use ratio of
bar width : within : between $=1: 1 / \varphi^{2}: \varphi$
Does this look better?
Draw both vertical and horizontal versions of your bar plot. In which one is the text easier to read? What would make you consider reordering the categories?

```
FREQUENCY OF VARIATION BY TYPE
```

 sample
 | | A | B |
| ---: | ---: | ---: |
| deletion | 105 | 51 |
| duplication | 76 | 38 |
| SNP | 75 | 98 |
| indel | 46 | 5 |
| insertion | 31 | 32 |

EXERCISE 2

Differences in data are important-sometimes more important than the data themselves. Think of the differences as the data.

For example, in the "frequency of variation by type" two-column table, the number of deletions drops by 54 from 105 in A to 51 in B.

Try to add this value to your bar plot. Is a relative or absolute difference meaningful here? Suggest reasons to show one or the other.

```
FREQUENCY OF VARIATION BY TYPE
    sample
    A B
    deletion 105 51
    duplication 76 38
        SNP 75 98
        indel 46 5
    insertion 31 32
```


EXERCISE 3

Draw a scatter plot using the data in the "frequency of variation by type" two-column table. Use the number of variations in A on the X axis and the relative change on the Y axis.
Does this representation make some questions easier to answer?
Address the challenge of labeling the points-this can be difficult!
What has been gained?
frequency of variation by type sample

	A	B
deletion	105	51
duplication	76	38
SNP	75	98
indel	46	5
insertion	31	32

EXERCISE 4

You are a terrific visual calculator and comparer.
How much faster can you compare lengths thannumbers? Let's check.Print this slide. Now, with pen and paper, time yourself tosee how quickly you can identify the larger of each ofthe two numbers in each pair. Next, time yourself to seehow quickly you can identify the longer of the twolengths in each pair.
Are you surprised at the timing difference? Which taskwas more tiring?
Notice that as the numbers get larger the longer thecomparison takes-your eye has to travel further. Canyou think of a way to align the number pairs differentlyto speed this up?237774973

